
Chapter 5

Classifying Microarray Samples

The fourth case study is from the area of bioinformatics. Namely, we will ad-
dress the problem of classifying microarray samples into a set of alternative
classes. More specifically, given a microarray probe that describes the gene
expression level of a patient, we aim to classify this patient into a pre-defined
set of genetic mutations of acute lymphoblastic leukemia. This case study
addresses several new data mining topics. The main focus, given the charac-
teristics of this type of datasets, is on feature selection, that is, how to reduce
the number of features that describe each observation. In our approach to
this particular application we will illustrate several general methods for fea-
ture selection. Other new data mining topics addressed in this chapter include
k-nearest neighbors classifiers, leave one out cross-validation, and some new
variants of ensemble models.

5.1 Problem Description and Objectives

Bioinformatics is one of the main areas of application of R. There is even an
associated project based on R, with the goal of providing a large set of analysis
tools for this domain. The project is called Bioconductor.1 This case study
will use the tools provided by this project to address a supervised classification
problem.

5.1.1 Brief Background on Microarray Experiments

One of the main difficulties faced by someone coming from a nonbiological
background is the huge amount of “new” terms used in this field. In this very
brief background section, we try to introduce the reader to some of the“jargon”
in this field and also to provide some mapping to more“standard”data mining
terminology.

The analysis of differential gene expression is one of the key applications of
DNA microarray experiments. Gene expression microarrays allow us to char-
acterize a set of samples (e.g., individuals) according to their expression levels

1http://www.bioconductor.org.

233

234 Data Mining with R: Learning with Case Studies

on a large set of genes. In this area a sample is thus an observation (case) of
some phenomenon under study. Microarray experiments are the means used
to measure a set of “variables” for these observations. The variables here are
a large set of genes. For each variable (gene), these experiments measure an
expression value. In summary, a dataset is formed by a set of samples (the
cases) for which we have measured expression levels on a large set of genes
(the variables). If these samples have some disease state associated with them,
we may try to approximate the unknown function that maps gene expression
levels into disease states. This function can be approximated using a dataset
of previously analyzed samples. This is an instantiation of supervised classi-
fication tasks, where the target variable is the disease type. The observations
in this problem are samples (microarrays, individuals), and the predictor vari-
ables are the genes for which we measure a value (the expression level) using a
microarray experiment. The key hypothesis here is thus that different disease
types can be associated with different gene expression patterns and, moreover,
that by measuring these patterns using microarrays we can accurately predict
what the disease type of an individual is.

There are several types of technologies created with the goal of obtaining
gene expression levels on some sample. Short oligonucleotide arrays are an
example of these technologies. The output of oligonucleotide chips is an im-
age that after several pre-processing steps can be mapped into a set of gene
expression levels for quite a large set of genes. The bioconductor project has
several packages devoted to these pre-processing steps that involve issues like
the analysis of the images resulting from the oligonucleotide chips, normal-
ization tasks, and several other steps that are necessary until we reach a set
of gene expression scores. In this case study we do not address these initial
steps. The interested reader is directed to several informative sources available
at the bioconductor site as well as several books (e.g., Hahne et al. (2008)).

In this context, our starting point will be a matrix of gene expression levels
that results from these pre-processing steps. This is the information on the
predictor variables for our observations. As we will see, there are usually many
more predictor variables being measured than samples; that is, we have more
predictors than observations. This is a typical characteristic of microarray data
sets. Another particularity of these expression matrices is that they appear
transposed when compared to what is “standard” for data sets. This means
that the rows will represent the predictors (i.e., genes), while the columns are
the observations (the samples). For each of the samples we will also need the
associated classification. In our case this will be an associated type of mutation
of a disease. There may also exist information on other co-variates (e.g., sex
and age of the individuals being sampled, etc.).

5.1.2 The ALL Dataset

The dataset we will use comes from a study on acute lymphoblastic
leukemia (Chiaretti et al., 2004; Li, 2009). The data consists of microarray

Classifying Microarray Samples 235

samples from 128 individuals with this type of disease. Actually, there are two
different types of tumors among these samples: T-cell ALL (33 samples) and
B-cell ALL (95 samples).

We will focus our study on the data concerning the B-cell ALL samples.
Even within this latter group of samples we can distinguish different types of
mutations. Namely, ALL1/AF4, BCR/ABL, E2A/PBX1, p15/p16 and also in-
dividuals with no cytogenetic abnormalities. In our analysis of the B-cell ALL
samples we will discard the p15/p16 mutation as we only have one sample.
Our modeling goal is to be able to predict the type of mutation of an individ-
ual given its microarray assay. Given that the target variable is nominal with
4 possible values, we are facing a supervised classification task.

5.2 The Available Data

The ALL dataset is part of the bioconductor set of packages. To use it, we
need to install at least a set of basic packages from bioconductor. We have not
included the dataset in our book package because the dataset is already part
of the R “universe”.

To install a set of basic bioconductor packages and the ALL dataset, we
need to carry out the following instructions that assume we have a working
Internet connection:

> source("http://bioconductor.org/biocLite.R")

> biocLite()

> biocLite("ALL")

This only needs to be done for the first time. Once you have these packages
installed, if you want to use the dataset, you simply need to do

> library(Biobase)

> library(ALL)

> data(ALL)

These instructions load the Biobase (Gentleman et al., 2004) and the
ALL (Gentleman et al., 2010) packages. We then load the ALL dataset, that
creates an object of a special class (ExpressionSet) defined by Bioconductor.
This class of objects contains significant information concerning a microarray
dataset. There are several associated methods to handle this type of object.
If you ask R about the content of the ALL object, you get the following infor-
mation:

> ALL

236 Data Mining with R: Learning with Case Studies

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 128 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL4 (128 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

date last seen: date patient was last seen

(21 total)

featureData

featureNames: 1000_at, 1001_at, ..., AFFX-YEL024w/RIP1_at (12625 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The information is divided in several groups. First we have the assay data
with the gene expression levels matrix. For this dataset we have 12,625 genes
and 128 samples. The object also contains a lot of meta-data about the samples
of the experiment. This includes the phenoData part with information on the
sample names and several associated co-variates. It also includes information
on the features (i.e., genes) as well as annotations of the genes from biomedical
databases. Finally, the object also contains information that describes the
experiment.

There are several methods that facilitate access to all information in the
ExpressionSet objects. We give a few examples below. We start by obtaining
some information on the co-variates associated to each sample:

> pD <- phenoData(ALL)

> varMetadata(pD)

labelDescription

cod Patient ID

diagnosis Date of diagnosis

sex Gender of the patient

age Age of the patient at entry

BT does the patient have B-cell or T-cell ALL

remission Complete remission(CR), refractory(REF) or NA. Derived from CR

CR Original remisson data

date.cr Date complete remission if achieved

t(4;11) did the patient have t(4;11) translocation. Derived from citog

t(9;22) did the patient have t(9;22) translocation. Derived from citog

cyto.normal Was cytogenetic test normal? Derived from citog

citog original citogenetics data, deletions or t(4;11), t(9;22) status

mol.biol molecular biology

fusion protein which of p190, p210 or p190/210 for bcr/able

mdr multi-drug resistant

kinet ploidy: either diploid or hyperd.

ccr Continuous complete remission? Derived from f.u

Classifying Microarray Samples 237

relapse Relapse? Derived from f.u

transplant did the patient receive a bone marrow transplant? Derived from f.u

f.u follow up data available

date last seen date patient was last seen

> table(ALL$BT)

B B1 B2 B3 B4 T T1 T2 T3 T4

5 19 36 23 12 5 1 15 10 2

> table(ALL$mol.biol)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

> table(ALLBT, ALLmol.bio)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

B 0 2 1 2 0 0

B1 10 1 0 8 0 0

B2 0 19 0 16 0 1

B3 0 8 1 14 0 0

B4 0 7 3 2 0 0

T 0 0 0 5 0 0

T1 0 0 0 1 0 0

T2 0 0 0 15 0 0

T3 0 0 0 9 1 0

T4 0 0 0 2 0 0

The first two statements obtain the names and descriptions of the existing
co-variates. We then obtain some information on the distribution of the sam-
ples across the two main co-variates: the BT variable that determines the type
of acute lymphoblastic leukemia, and the mol.bio variable that describes the
cytogenetic abnormality found on each sample (NEG represents no abnormal-
ity).

We can also obtain some information on the genes and samples:

> featureNames(ALL)[1:10]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"

[6] "1005_at" "1006_at" "1007_s_at" "1008_f_at" "1009_at"

> sampleNames(ALL)[1:5]

[1] "01005" "01010" "03002" "04006" "04007"

This code shows the names of the first 10 genes and the names of the first
5 samples.

As mentioned before, we will focus our analysis of this data on the B-cell
ALL cases and in particular on the samples with a subset of the mutations,
which will be our target class. The code below obtains the subset of data that
we will use:

238 Data Mining with R: Learning with Case Studies

> tgt.cases <- which(ALL$BT %in% levels(ALL$BT)[1:5] &

+ ALL$mol.bio %in% levels(ALL$mol.bio)[1:4])

> ALLb <- ALL[,tgt.cases]

> ALLb

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12625 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

date last seen: date patient was last seen

(21 total)

featureData

featureNames: 1000_at, 1001_at, ..., AFFX-YEL024w/RIP1_at (12625 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The first statement obtains the set of cases that we will consider. These
are the samples with specific values of the BT and mol.bio variables. Check
the calls to the table() function we have shown before to see which ones we
are selecting. We then subset the original ALL object to obtain the 94 samples
that will enter our study. This subset of samples only contains some of the
values of the BT and mol.bio variables. In this context, we should update the
available levels of these two factors on our new ALLb object:

> ALLb$BT <- factor(ALLb$BT)

> ALLb$mol.bio <- factor(ALLb$mol.bio)

The ALLb object will be the dataset we will use throughout this chapter.
It may eventually be a good idea to save this object in a local file on your
computer, so that you do not need to repeat these pre-processing steps in case
you want to start the analysis from scratch:

> save(ALLb, file = "myALL.Rdata")

5.2.1 Exploring the Dataset

The function exprs() allows us to access the gene expression levels matrix:

> es <- exprs(ALLb)

> dim(es)

[1] 12625 94

Classifying Microarray Samples 239

The matrix of our dataset has 12,625 rows (the genes/features) and 94
columns (the samples/cases).

In terms of dimensionality, the main challenge of this problem is the fact
that there are far too many variables (12,625) for the number of available
cases (94). With these dimensions, most modeling techniques will have a hard
time obtaining any meaningful result. In this context, one of our first goals
will be to reduce the number of variables, that is, eliminate some genes from
our analysis. To help in this task, we start by exploring the expression levels
data.

The following instruction tells us that most expression values are between
4 and 7:

> summary(as.vector(es))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.985 4.122 5.469 5.624 6.829 14.040

A better overview of the distribution of the expression levels can be
obtained graphically. We will use a function from package genefilter
Gentleman et al. (2010). This package must be installed before using it. Please
notice that this is a Bioconductor package, and these packages are not installed
from the standard R repository. The easiest way to install a Bioconductor
package is through the script provided by this project for this effect:

> source("http://bioconductor.org/biocLite.R")

> biocLite("genefilter")

The first instruction loads the script and then we use it do download and
install the package. We can now proceed with the above-mentioned graphical
display of the distribution of the expression levels:

> library(genefilter)

> hist(as.vector(es),breaks=80,prob=T,

+ xlab='Expression Levels',
+ main='Histogram of Overall Expression Levels')
> abline(v=c(median(as.vector(es)),

+ shorth(as.vector(es)),

+ quantile(as.vector(es),c(0.25,0.75))),

+ lty=2,col=c(2,3,4,4))

> legend('topright',c('Median','Shorth','1stQ','3rdQ'),
+ lty=2,col=c(2,3,4,4))

The results are shown in Figure 5.1. We have changed the default number
of intervals of the function hist() that obtains histograms. With the value
80 on the parameter breaks, we obtain a fine-grained approximation of the
distribution, which is possible given the large number of expression levels we
have. On top of the histogram we have plotted several lines showing the me-
dian, the first and third quartiles, and the shorth. This last statistic is a robust

240 Data Mining with R: Learning with Case Studies

estimator of the centrality of a continuous distribution that is implemented
by the function shorth() of package genefilter. It is calculated as the mean
of the values in a central interval containing 50% of the observations (i.e., the
inter-quartile range).

Histogram of Overall Expression Levels

Expression Levels

D
e

n
s
it
y

2 4 6 8 10 12 14

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Median
Shorth
1stQ
3rdQ

FIGURE 5.1: The distribution of the gene expression levels.

Are the distributions of the gene expression levels of the samples with a
particular mutation different from each other? The following code answers this
question:

> sapply(levels(ALLb$mol.bio), function(x) summary(as.vector(es[,

+ which(ALLb$mol.bio == x)])))

ALL1/AF4 BCR/ABL E2A/PBX1 NEG

Min. 2.266 2.195 2.268 1.985

1st Qu. 4.141 4.124 4.152 4.111

Median 5.454 5.468 5.497 5.470

Mean 5.621 5.627 5.630 5.622

3rd Qu. 6.805 6.833 6.819 6.832

Max. 14.030 14.040 13.810 13.950

As we see, things are rather similar across these subsets of samples and,
moreover, they are similar to the global distribution of expression levels.

Classifying Microarray Samples 241

5.3 Gene (Feature) Selection

Feature selection is an important task in many data mining problems. The
general problem is to select the subset of features (variables) of a problem
that is more relevant for the analysis of the data. This can be regarded as
an instantiation of the more general problem of deciding the weights (impor-
tance) of the features in the subsequent modeling stages. Generally, there are
two types of approaches to feature selection: (1) filters and (2) wrappers. As
mentioned in Section 3.3.2 the former use statistical properties of the fea-
tures to select the final set, while the latter include the data mining tools in
the selection process. Filter approaches are carried out in a single step, while
wrappers typically involve a search process where we iteratively look for the
set of features that is more adequate for the data mining tools we are applying.
Feature wrappers have a clear overhead in terms of computational resources.
They involve running the full filter+model+evaluate cycle several times until
some convergence criteria are met. This means that for very large data mining
problems, they may not be adequate if time is critical. Yet, they will find a
solution that is theoretically more adequate for the used modeling tools. The
strategies we use and describe in this section can be seen as filter approaches.

5.3.1 Simple Filters Based on Distribution Properties

The first gene filtering methods we describe are based on information concern-
ing the distribution of the expression levels. This type of experimental data
usually includes several genes that are not expressed at all or show very small
variability. The latter property means that these genes can hardly be used
to differentiate among samples. Moreover, this type of microarray usually has
several control probes that can be safely removed from our analysis. In the
case of this study, which uses Affymetric U95Av2 microarrays, these probes
have their name starting with the letters “AFFX”.

We can get an overall idea of the distribution of the expression levels
of each gene across all individuals with the following graph. We will use the
median and inter-quartile range (IQR) as the representatives of these distri-
butions. The following code obtains these scores for each gene and plots the
values producing the graph in Figure 5.2:

> rowIQRs <- function(em)

+ rowQ(em,ceiling(0.75*ncol(em))) - rowQ(em,floor(0.25*ncol(em)))

> plot(rowMedians(es),rowIQRs(es),

+ xlab='Median expression level',
+ ylab='IQR expression level',
+ main='Main Characteristics of Genes Expression Levels')

The function rowMedians() from package Biobase obtains a vector of the

242 Data Mining with R: Learning with Case Studies

medians per row of a matrix. This is an efficient implementation of this task.
A less efficient alternative would be to use the function apply().2 The rowQ()
function is another efficient implementation provided by this package with the
goal of obtaining quantiles of a distribution from the rows of a matrix. The
second argument of this function is an integer ranging from 1 (that would give
us the minimum) to the number of columns of the matrix (that would result
in the maximum). In this case we are using this function to obtain the IQR by
subtracting the 3rd quartile from the 1st quartile. These statistics correspond
to 75% and 25% of the data, respectively. We have used the functions floor()
and ceiling() to obtain the corresponding order in the number of values of
each row. Both functions take the integer part of a floating point number,
although with different rounding procedures. Experiment with both to see the
difference. Using the function rowQ(), we have created the function rowIQRs()
to obtain the IQR of each row.

4 6 8 10 12

0
1

2
3

4
5

Median expression level

IQ
R

 e
x
p

re
s
s
io

n
 le

ve
l

Main Characteristics of Gene Expression Levels

FIGURE 5.2: The median and IQR of the gene expression levels.

Figure 5.2 provides interesting information. Namely, we can observe that
a large proportion of the genes have very low variability (IQRs near 0). As
mentioned above, if a gene has a very low variability across all samples, then
it is reasonably safe to conclude that it will not be useful in discriminating
among the different types of mutations of B-cell ALL. This means that we
can safely remove these genes from our classification task. We should note

2As an exercise, time both alternatives using function system.time() to observe the
difference.

Classifying Microarray Samples 243

that there is a caveat on this reasoning. In effect, we are looking at the genes
individually. This means that there is some risk that some of these genes
with low variability, when put together with other genes, could actually be
useful for the classification task. Still, the gene-by-gene approach that we will
follow is the most common for these problems as exploring the interactions
among genes with datasets of this dimension is not easy. Nevertheless, there are
methods that try to estimate the importance of features, taking into account
their dependencies. That is the case of the RELIEF method (Kira and Rendel,
1992; Kononenko et al., 1997).

We will use a heuristic threshold based on the value of the IQR to eliminate
some of the genes with very low variability. Namely, we will remove any genes
with a variability that is smaller than 1/5 of the global IQR. The function
nsFilter() from the package genefilter can be used for this type of filtering:

> library(genefilter)

> ALLb <- nsFilter(ALLb,

+ var.func=IQR,

+ var.cutoff=IQR(as.vector(es))/5,

+ feature.exclude="^AFFX")

> ALLb

$eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4035 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

mol.bio: molecular biology

(22 total)

featureData

featureNames: 41654_at, 35430_at, ..., 34371_at (4035 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

$filter.log

$filter.log$numLowVar

[1] 4764

$filter.log$numDupsRemoved

[1] 2918

$filter.log$feature.exclude

[1] 19

244 Data Mining with R: Learning with Case Studies

$filter.log$numRemoved.ENTREZID

[1] 889

As you see, we are left with only 4,035 genes from the initial 12,625. This
is a rather significant reduction. Nevertheless, we are still far from a dataset
that is “manageable” by most classification models, given that we only have
94 observations.

The result of the nsFilter() function is a list with several components.
Among these we have several containing information on the removed genes,
and also the component eset with the “filtered” object. Now that we have
seen the result of this filtering, we can update our ALLb and es objects to
contain the filtered data:

> ALLb <- ALLb$eset

> es <- exprs(ALLb)

> dim(es)

[1] 4035 94

5.3.2 ANOVA Filters

If a gene has a distribution of expression values that is similar across all possi-
ble values of the target variable, then it will surely be useless to discriminate
among these values. Our next approach builds on this idea. We will compare
the mean expression level of genes across the subsets of samples belonging to
a certain B-cell ALL mutation, that is, the mean conditioned on the target
variable values. Genes for which we have high statistical confidence of having
the same mean expression level across the groups of samples belonging to each
mutation will be discarded from further analysis.

Comparing means across more than two groups can be carried out using
an ANOVA statistical test. In our case study, we have four groups of cases,
one for each of the gene mutations of B-cell ALL we are considering. Filtering
of genes based on this test is rather easy in R, thanks to the facilities provided
by the genefilter package. We can carry out this type of filtering as follows:

> f <- Anova(ALLb$mol.bio, p = 0.01)

> ff <- filterfun(f)

> selGenes <- genefilter(exprs(ALLb), ff)

> sum(selGenes)

[1] 752

> ALLb <- ALLb[selGenes,]

> ALLb

Classifying Microarray Samples 245

ExpressionSet (storageMode: lockedEnvironment)

assayData: 752 features, 94 samples

element names: exprs

phenoData

sampleNames: 01005, 01010, ..., LAL5 (94 total)

varLabels and varMetadata description:

cod: Patient ID

diagnosis: Date of diagnosis

...: ...

mol.bio: molecular biology

(22 total)

featureData

featureNames: 266_s_at, 33047_at, ..., 40698_at (752 total)

fvarLabels and fvarMetadata description: none

experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790

Annotation: hgu95av2

The function Anova() creates a new function for carrying out ANOVA
filtering. It requires a factor that determines the subgroups of our dataset and
a statistical significance level. The resulting function is stored in the variable
f. The filterfun() function works in a similar manner. It generates a fil-
tering function that can be applied to an expression matrix. This application
is carried out with the genefilter() function that produces a vector with
as many elements as there are genes in the given expression matrix. The vec-
tor contains logical values. Genes that are considered useful according to the
ANOVA statistical test have the value TRUE. As you can see, there are only
752. Finally, we can use this vector to filter our ExpressionSet object.

Figure 5.3 shows the median and IQR of the genes selected by the ANOVA
test. The figure was obtained as follows:

> es <- exprs(ALLb)

> plot(rowMedians(es),rowIQRs(es),

+ xlab='Median expression level',
+ ylab='IQR expression level',
+ main='Distribution Properties of the Selected Genes')

The variability in terms of IQR and median that we can observe in Fig-
ure 5.3 provides evidence that the genes are expressed in different scales of val-
ues. Several modeling techniques are influenced by problems where each case
is described by a set of variables using different scales. Namely, any method
relying on distances between observations will suffer from this type of problem
as distance functions typically sum up differences between variable values. In
this context, variables with a higher average value will end up having a larger
influence on the distance between observations. To avoid this effect, it is usual
to standardize (normalize) the data. This transformation consists of subtract-
ing the typical value of the variables and dividing the result by a measure of

246 Data Mining with R: Learning with Case Studies

4 6 8 10 12

1
2

3
4

Median expression level

IQ
R

 e
x
p

re
s
s
io

n
 le

ve
l

Distribution Properties of the Selected Genes

FIGURE 5.3: The median and IQR of the final set of genes.

spread. Given that not all modeling techniques are affected by this data char-
acteristic we will leave this transformation to the modeling stages, making it
depend on the tool to be used.

5.3.3 Filtering Using Random Forests

The expression level matrix resulting from the ANOVA filter is already of
manageable size, although we still have many more features than observations.
In effect, in our modeling attempts described in Section 5.4, we will apply the
selected models to this matrix. Nevertheless, one can question whether better
results can be obtained with a dataset with a more “standard” dimensionality.
In this context, we can try to further reduce the number of features and then
compare the results obtained with the different datasets.

Random forests can be used to obtain a ranking of the features in terms
of their usefulness for a classification task. In Section 3.3.2 (page 112) we saw
an example of using random forests to obtain a ranking of importance of the
variables in the context of a prediction problem.

Before proceeding with an illustration of this approach, we will change the
names of the genes. The current names are non-standard in terms of what
is expected in data frames that are used by many modeling techniques. The
function make.names() can be used to “solve” this problem as follows:

Classifying Microarray Samples 247

> featureNames(ALLb) <- make.names(featureNames(ALLb))

> es <- exprs(ALLb)

The function featureNames() provides access to the names of the genes
in an ExpressionSet.

Random forests can be used to obtain a ranking of the genes as follows,

> library(randomForest)

> dt <- data.frame(t(es), Mut = ALLb$mol.bio)

> rf <- randomForest(Mut ~ ., dt, importance = T)

> imp <- importance(rf)

> imp <- imp[, ncol(imp) - 1]

> rf.genes <- names(imp)[order(imp, decreasing = T)[1:30]]

We construct a training set by adding the mutation information to the
transpose of the expression matrix.3 We then obtain a random forest with
the parameter importance set to TRUE to obtain estimates of the importance
of the variables. The function importance() is used to obtain the relevance
of each variable. This function actually returns several scores on different
columns, according to different criteria and for each class value. We select
the column with the variable scores measured as the estimated mean decrease
in classification accuracy when each variable is removed in turn. Finally, we
obtain the genes that appear at the top 30 positions of the ranking generated
by these scores.

We may be curious about the expression levels distribution of theses 30
genes across the different mutations. We can obtain the median level for these
top 30 genes as follows:

> sapply(rf.genes, function(g) tapply(dt[, g], dt$Mut, median))

X40202_at X1674_at X1467_at X1635_at X37015_at X34210_at

ALL1/AF4 8.550639 3.745752 3.708985 7.302814 3.752649 5.641130

BCR/ABL 9.767293 5.833510 4.239306 8.693082 4.857105 9.204237

E2A/PBX1 7.414635 3.808258 3.411696 7.562676 6.579530 8.198781

NEG 7.655605 4.244791 3.515020 7.324691 3.765741 8.791774

X32116_at X34699_at X40504_at X41470_at X41071_at X36873_at

ALL1/AF4 7.115400 4.253504 3.218079 9.616743 7.698420 7.040593

BCR/ABL 7.966959 6.315966 4.924310 5.205797 6.017967 3.490262

E2A/PBX1 7.359097 6.102031 3.455316 3.931191 6.058185 3.634471

NEG 7.636213 6.092511 3.541651 4.157748 6.573731 3.824670

X35162_s_at X38323_at X1134_at X32378_at X1307_at X1249_at

ALL1/AF4 4.398885 4.195967 7.846189 8.703860 3.368915 3.582763

BCR/ABL 4.924553 4.866452 8.475578 9.694933 4.945270 4.477659

E2A/PBX1 4.380962 4.317550 8.697500 10.066073 4.678577 3.257649

NEG 4.236335 4.286104 8.167493 9.743168 4.863930 3.791764

X33774_at X40795_at X36275_at X34850_at X33412_at X37579_at

ALL1/AF4 6.970072 3.867134 3.618819 5.426653 10.757286 7.614200

3Remember that expression matrices have genes (variables) on the rows.

248 Data Mining with R: Learning with Case Studies

BCR/ABL 8.542248 4.544239 6.259073 6.898979 6.880112 8.231081

E2A/PBX1 7.385129 4.151637 3.635956 5.928574 5.636466 9.494368

NEG 7.348818 3.909532 3.749953 6.327281 5.881145 8.455750

X37225_at X39837_s_at X37403_at X37967_at X2062_at X35164_at

ALL1/AF4 5.220668 6.633188 5.888290 8.130686 9.409753 5.577268

BCR/ABL 3.460902 7.374046 5.545761 9.274695 7.530185 6.493672

E2A/PBX1 7.445655 6.708400 4.217478 8.260236 7.935259 7.406714

NEG 3.387552 6.878846 4.362275 8.986204 7.086033 7.492440

We can observe several interesting differences between the median expres-
sion level across the types of mutations, which provides a good indication of
the discriminative power of these genes. We can obtain even more detail by
graphically inspecting the concrete expression values of these genes for the 94
samples:

> library(lattice)

> ordMut <- order(dt$Mut)

> levelplot(as.matrix(dt[ordMut,rf.genes]),

+ aspect='fill', xlab='', ylab='',
+ scales=list(

+ x=list(

+ labels=c('+','-','*','|')[as.integer(dt$Mut[ordMut])],
+ cex=0.7,

+ tck=0)

+),

+ main=paste(paste(c('"+"','"-"','"*"','"|"'),
+ levels(dt$Mut)

+),

+ collapse='; '),
+ col.regions=colorRampPalette(c('white','orange','blue'))
+)

The graph obtained with this code is shown in Figure 5.4. We observe that
there are several genes with marked differences in expression level across the
different mutations. For instance, there are obvious differences in expression
level at gene X36275_at between ALL1/AF4 and BCR/ABL. To obtain this graph
we used the function levelplot() of the lattice package. This function can
plot a color image of a matrix of numbers. In this case we have used it to plot
our expression level matrix with the samples ordered by type of mutation.

5.3.4 Filtering Using Feature Clustering Ensembles

The approach described in this section uses a clustering algorithm to obtain 30
groups of variables that are supposed to be similar. These 30 variable clusters
will then be used to obtain an ensemble classification model where m models
will be obtained with 30 variables, each one randomly chosen from one of the
30 clusters.

Ensembles are learning methods that build a set of predictive models and

Classifying Microarray Samples 249

"+" ALL1/AF4; "−" BCR/ABL; "*" E2A/PBX1; "|" NEG

X40202_at

X1674_at

X1467_at

X1635_at

X37015_at

X34210_at

X32116_at

X34699_at

X40504_at

X41470_at

X41071_at

X36873_at

X35162_s_at

X38323_at

X1134_at

X32378_at

X1307_at

X1249_at

X33774_at

X40795_at

X36275_at

X34850_at

X33412_at

X37579_at

X37225_at

X39837_s_at

X37403_at

X37967_at

X2062_at

X35164_at

++++++++++−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* * * * * |

3

4

5

6

7

8

9

10

11

FIGURE 5.4: The expression level of the 30 genes across the 94 samples.

250 Data Mining with R: Learning with Case Studies

then classify new observations using some form of averaging of the predictions
of these models. They are known for often outperforming the individual models
that form the ensemble. Ensembles are based on some form of diversity among
the individual models. There are many forms of creating this diversity. It
can be through different model parameter settings or by different samples of
observations used to obtain each model, for instance. Another alternative is
to use different predictors for each model in the ensemble. The ensembles we
use in this section follow this latter strategy. This approach works better if
the pool of predictors from which we obtain different sets is highly redundant.
We will assume that there is some degree of redundancy on our set of features
generated by the ANOVA filter. We will try to model this redundancy by
clustering the variables. Clustering methods are based on distances, in this
case distances between variables. Two variables are near (and thus similar)
each other if their expression values across the 94 samples are similar. By
clustering the variables we expect to find groups of genes that are similar to
each other. The Hmisc package contains a function that uses a hierarchical
clustering algorithm to cluster the variables of a dataset. The name of this
function is varclus(). We can use it as follows:

> library(Hmisc)

> vc <- varclus(t(es))

> clus30 <- cutree(vc$hclust, 30)

> table(clus30)

clus30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

27 26 18 30 22 18 24 46 22 20 24 18 56 28 47 32 22 31 18 22 18 33 20 20 21

26 27 28 29 30

17 9 19 30 14

We used the function cutree() to obtain a clustering formed by 30 groups
of variables. We then checked how many variables (genes) belong to each
cluster. Based on this clustering we can create sets of predictors by randomly
selecting one variable from each cluster. The reasoning is that members of the
same cluster will be similar to each other and thus somehow redundant.

The following function facilitates the process by generating one set of vari-
ables via randomly sampling from the selected number of clusters (defaulting
to 30):

> getVarsSet <- function(cluster,nvars=30,seed=NULL,verb=F)

+ {

+ if (!is.null(seed)) set.seed(seed)

+

+ cls <- cutree(cluster,nvars)

+ tots <- table(cls)

+ vars <- c()

+ vars <- sapply(1:nvars,function(clID)

+ {

Classifying Microarray Samples 251

+ if (!length(tots[clID])) stop('Empty cluster! (',clID,')')
+ x <- sample(1:tots[clID],1)

+ names(cls[cls==clID])[x]

+ })

+ if (verb) structure(vars,clusMemb=cls,clusTots=tots)

+ else vars

+ }

> getVarsSet(vc$hclust)

[1] "X41346_at" "X33047_at" "X1044_s_at" "X38736_at" "X39814_s_at"

[6] "X649_s_at" "X41672_at" "X36845_at" "X40771_at" "X38370_at"

[11] "X36083_at" "X34964_at" "X35228_at" "X40855_at" "X41038_at"

[16] "X40495_at" "X40419_at" "X1173_g_at" "X40088_at" "X879_at"

[21] "X39135_at" "X34798_at" "X39649_at" "X39774_at" "X39581_at"

[26] "X37024_at" "X32585_at" "X41184_s_at" "X33305_at" "X41266_at"

> getVarsSet(vc$hclust)

[1] "X40589_at" "X33598_r_at" "X41015_at" "X38999_s_at" "X37027_at"

[6] "X32842_at" "X37951_at" "X35693_at" "X36874_at" "X41796_at"

[11] "X1462_s_at" "X31751_f_at" "X34176_at" "X40855_at" "X1583_at"

[16] "X38488_s_at" "X32542_at" "X32961_at" "X32321_at" "X879_at"

[21] "X38631_at" "X37718_at" "X948_s_at" "X38223_at" "X34256_at"

[26] "X1788_s_at" "X38271_at" "X37610_at" "X33936_at" "X36899_at"

Each time we call this function, we will get a “new” set of 30 variables.
Using this function it is easy to generate a set of datasets formed by different
predictors and then obtain a model using each of these sets. In Section 5.4 we
present a function that obtains ensembles using this strategy.

Further readings on feature selection

Feature selection is a well-studied topic in many disciplines. Good overviews and references
of the work in the area of data mining can be obtained in Liu and Motoda (1998), Chizi and
Maimon (2005), and Wettschereck et al. (1997).

5.4 Predicting Cytogenetic Abnormalities

This section describes our modeling attempts for the task of predicting the
type of cytogenetic abnormalities of the B-cell ALL cases.

5.4.1 Defining the Prediction Task

The data mining problem we are facing is a predictive task. More precisely, it is
a classification problem. Predictive classification consists of obtaining models

252 Data Mining with R: Learning with Case Studies

designed with the goal of forecasting the value of a nominal target variable
using information on a set of predictors. The models are obtained using a set
of labeled observations of the phenomenon under study, that is, observations
for which we know both the values of the predictors and of the target variable.

In this case study our target variable is the type of cytogenetic abnormal-
ity of a B-cell ALL sample. In our selected dataset, this variable will take four
possible values: ALL1/AF4, BCR/ABL, E2A/PBX1, and NEG. Regarding the pre-
dictors, they will consist of a set of selected genes for which we have measured
an expression value. In our modeling attempts we will experiment with differ-
ent sets of selected genes, based on the study described in Section 5.3. This
means that the number of predictors (features) will vary depending on these
trials. Regarding the number of observations, they will consist of 94 cases of
B-cell ALL.

5.4.2 The Evaluation Metric

The prediction task is a multi-class classification problem. Predictive classi-
fication models are usually evaluated using the error rate or its complement,
the accuracy. Nevertheless, there are several alternatives, such as the area un-
der the ROC curve, pairs of measures (e.g., precision and recall), and also
measures of the accuracy of class probability estimates (e.g., the Brier score).
The package ROCR provides a good sample of these measures.

The selection of the evaluation metric for a given problem often depends
on the goals of the user. This is a difficult decision that is often impaired
by incomplete information such as the absence of information on the costs of
misclassifying a class i case with class j (known as the misclassification costs).

In our case study we have no information on the misclassification costs,
and thus we assume that it is equally serious to misclassify, for instance,
an E2A/PBX1 mutation as NEG, as it is to misclassify ALL1/AF4 as BCR/ABL.
Moreover, we have more than two classes, and generalizations of ROC analysis
to multi-class problems are not so well established, not to mention recent
drawbacks discovered in the use of the area under the ROC curve (Hand,
2009). In this context, we will resort to the use of the standard accuracy that
is measured as

acc = 1− 1
N

N�

i=1

L0/1(yi, ŷi) (5.1)

where N is the size of test sample, and L0/1() is a loss function defined as

L0/1(yi, ŷi) =
�

0 if yi = ŷi

1 otherwise (5.2)

Classifying Microarray Samples 253

5.4.3 The Experimental Procedure

The number of observations of the dataset we will use is rather small: 94
cases. In this context, the more adequate experimental methodology to obtain
reliable estimates of the error rate is the Leave-One-Out Cross-Validation
(LOOCV) method. LOOCV is a special case of the k-fold cross-validation
experimental methodology that we have used before, namely, when k equals
the number of observations. Briefly, LOOCV consists of obtaining N models,
where N is the dataset size, and each model is obtained using N −1 cases and
tested on the observation that was left out. In the book package you may find
the function loocv() that implements this type of experiment. This function
uses a process similar to the other functions we have described in previous
chapters for experimental comparisons. Below is a small illustration of its use
with the iris dataset:

> data(iris)

> rpart.loocv <- function(form,train,test,...) {

+ require(rpart,quietly=T)

+ m <- rpart(form,train,...)

+ p <- predict(m,test,type='class')
+ c(accuracy=ifelse(p == resp(form,test),100,0))

+ }

> exp <- loocv(learner('rpart.loocv',list()),
+ dataset(Species~.,iris),

+ loocvSettings(seed=1234,verbose=F))

> summary(exp)

== Summary of a Leave One Out Cross Validation Experiment ==

LOOCV experiment with verbose = FALSE and seed = 1234

* Dataset :: iris

* Learner :: rpart.loocv with parameters:

* Summary of Experiment Results:

accuracy

avg 93.33333

std 25.02795

min 0.00000

max 100.00000

invalid 0.00000

The function loocv() takes the usual three arguments: the learner, the
dataset, and the settings of the experiment. It returns an object of class
loocvRun that we can use with the function summary() to obtain the results
of the experiment.

254 Data Mining with R: Learning with Case Studies

The user-defined function (rpart.loocv() in the example above) should
run the learner, use it for obtaining predictions for the test set, and return
a vector with whatever evaluation statistics we wish to estimate by LOOCV.
In this small illustration it simply calculates the accuracy of the learner. We
should recall that in LOOCV the test set is formed by a single observation
on each iteration of the experimental process so in this case we only need to
check whether the prediction is equal to the true value.

5.4.4 The Modeling Techniques

As discussed before we will use three different datasets that differ in the pre-
dictors that are used. One will have all genes selected by an ANOVA test,
while the other two will select 30 of these genes. All datasets will contain 94
cases of B-cell ALL. With the exception of the target variable, all information
is numeric.

To handle this problem we have selected three different modeling tech-
niques. Two of them have already been used before in this book. They are
random forests and support vector machines (SVMs). They are recognized
as some of the best off-the-shelf prediction methods. The third algorithm we
will try on this problem is new. It is a method based on distances between
observations, known as k-nearest neighbors.

The use of random forests is motivated by the fact that these models
are particularly adequate to handle problems with a large number of fea-
tures. This property derives from the algorithm used by these methods (see
Section 5.4.4.1) that randomly selects subsets of the full set of features of
a problem. Regarding the use of k-nearest neighbors, the motivation lies on
the assumption that samples with the same mutation should have a similar
gene “signature,” that is, should have similar expression values on the genes
we use to describe them. The validity of this assumption is strongly depen-
dent on the genes selected to describe the samples. Namely, they should have
good discrimination properties across the different mutations. As we will see
in Section 5.4.4.2, k-nearest neighbors methods work by assessing similarities
between cases, and thus they seem adequate for this assumption. Finally, the
use of SVMs is justified with the goal of trying to explore nonlinear rela-
tionships that may eventually exist between gene expression and cytogenetic
abnormalities.

SVMs were described in Section 3.4.2.2 (page 127). They are highly non-
linear models that can be used on both regression and classification problems.
Once again, among the different implementations of SVMs that exist in R, we
will use the svm() function of package e1071.

5.4.4.1 Random Forests

Random forests (Breiman, 2001) are an example of an ensemble model, that
is, a model that is formed by a set of simpler models. In particular, random

Classifying Microarray Samples 255

forests consist of a set of decision trees, either classification or regression trees,
depending on the problem being addressed. The user decides the number of
trees in the ensemble. Each tree is learned using a bootstrap sample obtained
by randomly drawing N cases with replacement from the original dataset,
where N is the number of cases in that dataset. With each of these training
sets, a different tree is obtained. Each node of these trees is chosen considering
only a random subset of the predictors of the original problem. The size of
these subsets should be much smaller than the number of predictors in the
dataset. The trees are fully grown, that is, they are obtained without any post-
pruning step. More details on how tree-based models are obtained appear in
Section 2.6.2 (page 71).

The predictions of these ensembles are obtained by averaging over the
predictions of each tree. For classification problems this consists of a voting
mechanism. The class that gets more votes across all trees is the prediction of
the ensemble. For regression, the values predicted by each tree are averaged
to obtain the random forest prediction.

In R, random forests are implemented in the package randomForest. We
have already seen several examples of the use of the functions provided by this
package throughout the book, namely, for feature selection.

Further readings on random forests

The reference on Random Forests is the original work by Breiman (2001). Further infor-
mation can also be obtained at the site http://stat-www.berkeley.edu/users/breiman/

RandomForests/.

5.4.4.2 k-Nearest Neighbors

The k-nearest neighbors algorithm belongs to the class of so-called lazy learn-
ers. These types of techniques do not actually obtain a model from the training
data. They simply store this dataset. Their main work happens at prediction
time. Given a new test case, its prediction is obtained by searching for similar
cases in the training data that was stored. The k most similar training cases
are used to obtain the prediction for the given test case. In classification prob-
lems, this prediction is usually obtained by voting and thus an odd number
for k is desirable. However, more elaborate voting mechanisms that take into
account the distance of the test case to each of the k neighbors are also possi-
ble. For regression, instead of voting we have an average of the target variable
values of the k neighbors.

This type of model is strongly dependent on the notion of similarity be-
tween cases. This notion is usually defined with the help of a metric over the
input space defined by the predictor variables. This metric is a distance func-
tion that can calculate a number representing the “difference” between any
two observations. There are many distance functions, but a rather frequent
selection is the Euclidean distance function that is defined as

256 Data Mining with R: Learning with Case Studies

d(xi,xj) =

����
p�

k=1

(Xi,k −Xj,k)2 (5.3)

where p is the number of predictors, and xi and xj are two observations.
These methods are thus very sensitive to both the selected metric and also

to the presence of irrelevant variables that may distort the notion of similarity.
Moreover, the scale of the variables should be uniform; otherwise we might
underestimate some of the differences in variables with lower average values.

The choice of the number of neighbors (k) is also an important parameter of
these methods. Frequent values include the numbers in the set {1, 3, 5, 7, 11},
but obviously these are just heuristics. However, we can say that larger val-
ues of k should be avoided because there is the risk of using cases that are
already far away from the test case. Obviously, this depends on the density
of the training data. Too sparse datasets incur more of this risk. As with any
learning model, the “ideal” parameter settings can be estimated through some
experimental methodology.

In R, the package class (Venables and Ripley, 2002) includes the function
knn() that implements this idea. Below is an illustrative example of its use
on the iris dataset:

> library(class)

> data(iris)

> idx <- sample(1:nrow(iris), as.integer(0.7 * nrow(iris)))

> tr <- iris[idx,]

> ts <- iris[-idx,]

> preds <- knn(tr[, -5], ts[, -5], tr[, 5], k = 3)

> table(preds, ts[, 5])

preds setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 2

virginica 0 1 14

As you see, the function knn() uses a nonstandard interface. The first
argument is the training set with the exception of the target variable column.
The second argument is the test set, again without the target. The third
argument includes the target values of the training data. Finally, there are
several other parameters controlling the method, among which the parameter
k determines the number of neighbors. We can create a small function that
enables the use of this method in a more standard formula-type interface:

> kNN <- function(form, train, test, norm = T, norm.stats = NULL,

+ ...) {

+ require(class, quietly = TRUE)

+ tgtCol <- which(colnames(train) == as.character(form[[2]]))

+ if (norm) {

Classifying Microarray Samples 257

+ if (is.null(norm.stats))

+ tmp <- scale(train[, -tgtCol], center = T, scale = T)

+ else tmp <- scale(train[, -tgtCol], center = norm.stats[[1]],

+ scale = norm.stats[[2]])

+ train[, -tgtCol] <- tmp

+ ms <- attr(tmp, "scaled:center")

+ ss <- attr(tmp, "scaled:scale")

+ test[, -tgtCol] <- scale(test[, -tgtCol], center = ms,

+ scale = ss)

+ }

+ knn(train[, -tgtCol], test[, -tgtCol], train[, tgtCol],

+ ...)

+ }

> preds.norm <- kNN(Species ~ ., tr, ts, k = 3)

> table(preds.norm, ts[, 5])

preds.norm setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 3

virginica 0 1 13

> preds.notNorm <- kNN(Species ~ ., tr, ts, norm = F, k = 3)

> table(preds.notNorm, ts[, 5])

preds.notNorm setosa versicolor virginica

setosa 14 0 0

versicolor 0 14 2

virginica 0 1 14

This function allows the user to indicate if the data should be normalized
prior to the call to the knn() function. This is done through parameter norm.
In the example above, you see two examples of its use. A third alternative is
to provide the centrality and spread statistics as a list with two components in
the argument norm.stats. If this is not done, the function will use the means
as centrality estimates and the standard deviations as statistics of spread. In
our experiments we will use this facility to call the function with medians and
IQRs. The function kNN() is actually included in our book package so you do
not need to type its code.

Further readings on k-nearest neighbors

The standard reference on this type of methods is the work by Cover and Hart (1967). Good
overviews can be found in the works by Aha et al. (1991) and Aha (1997). Deeper analysis can
be found in the PhD theses by Aha (1990) and Wettschereck (1994). A different, but related,
perspective of lazy learning is the use of so-called local models (Nadaraya, 1964; Watson, 1964).
Good references on this vast area are Atkeson et al. (1997) and Cleveland and Loader (1996).

258 Data Mining with R: Learning with Case Studies

5.4.5 Comparing the Models

This section describes the process we have used to compare the selected models
using a LOOCV experimental methodology.

In Section 5.3, we have seen examples of several feature selection methods.
We have used some basic filters to eliminate genes with low variance and also
control probes. Next, we applied a method based on the conditioned distribu-
tion of the expression levels with respect to the target variable. This method
was based on an ANOVA statistical test. Finally, from the results of this test
we tried to further reduce the number of genes using random forests and clus-
tering of the variables. With the exception of the first simple filters, all other
methods depend somehow on the target variable values. We may question
whether these filtering stages should be carried out before the experimental
comparisons, or if we should integrate these steps into the processes being
compared. If our goal is to obtain an unbiased estimate of the classification
accuracy of our methodology on new samples, then we should include these
filtering stages as part of the data mining processes being evaluated and com-
pared. Not doing so would mean that the estimates we obtain are biased by
the fact that the genes used to obtain the models were selected using infor-
mation of the test set. In effect, if we use all datasets to decide which genes
to use, then we are using information on this selection process that should be
unknown as it is part of the test data. In this context, we will include part
of the filtering stages within the user-defined functions that implement the
models we will compare.

For each iteration of the LOOCV process, a feature selection process, is
carried out, prior to the predictive model construction, using only the training
data provided by the LOOCV routines. The initial simple filtering step will be
carried out before the LOOCV comparison. The genes removed by this step
would not change if we do it inside the LOOCV process. Control probes would
always be removed, and the genes removed due to very low variance would
most probably still be removed if a single sample is not given (which is what
the LOOCV process does at each iteration).

We will now describe the user-defined functions that need to be supplied
to the LOOCV routines for running the experiments. For each of the modeling
techniques, we will evaluate several variants. These alternatives differ not only
on several parameters of the techniques themselves, but also on the feature
selection process that is used. The following list includes the information on
these variants for each modeling technique:

> vars <- list()

> vars$randomForest <- list(ntree=c(500,750,100),

+ mtry=c(5,15,30),

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))
> vars$svm <- list(cost=c(1,100,500),

+ gamma=c(0.01,0.001,0.0001),

Classifying Microarray Samples 259

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))
> vars$knn <- list(k=c(3,5,7,11),

+ norm=c(T,F),

+ fs.meth=list(list('all'),
+ list('rf',30),
+ list('varclus',30,50)))

The list has three components, one for each of the algorithms being com-
pared. For each model the list includes the parameters that should be used.
For each of the parameters a set of values is given. The combinations of all
these possible values will determine the different variants of the systems. Re-
garding random forests, we will consider three values for the parameter ntree
that sets the number of trees in the ensemble, and three values for the mtry
parameter that determines the size of the random subset of features to use
when deciding the test for each tree node. The last parameter (fs.meth) pro-
vides the alternatives for the feature selection phase that we describe below.
With respect to SVMs, we consider three different values for both the cost
and gamma parameters. Finally, for the k-nearest neighbors, we try four values
for k and two values for the parameter that determines if the predictors data
is to be normalized or not.

As mentioned above, for each of the learners we consider three alternative
feature sets (the parameter fs.meth). The first alternative (list(’all’))
uses all the features resulting from the ANOVA statistical test. The second
(list(’rf’,30)) selects 30 genes from the set obtained with the ANOVA
test, using the feature ranking obtained with a random forest. The final al-
ternative select 30 genes using the variable clustering ensemble strategy that
we described previously and then builds an ensemble using 50 models with
30 predictors randomly selected from the variable clusters. In order to imple-
ment the idea of the ensembles based on different variable sets generated by
a clustering of the genes, we have created the following function:

> varsEnsembles <- function(tgt,train,test,

+ varsSets,

+ baseLearner,blPars,

+ verb=F)

+ {

+ preds <- matrix(NA,ncol=length(varsSets),nrow=NROW(test))

+ for(v in seq(along=varsSets)) {

+ if (baseLearner=='knn')
+ preds[,v] <- knn(train[,-which(colnames(train)==tgt)],

+ test[,-which(colnames(train)==tgt)],

+ train[,tgt],blPars)

+ else {

+ m <- do.call(baseLearner,

+ c(list(as.formula(paste(tgt,

+ paste(varsSets[[v]],

260 Data Mining with R: Learning with Case Studies

+ collapse='+'),
+ sep='~')),
+ train[,c(tgt,varsSets[[v]])]),

+ blPars)

+)

+ if (baseLearner == 'randomForest')
+ preds[,v] <- do.call('predict',
+ list(m,test[,c(tgt,varsSets[[v]])],

+ type='response'))
+ else

+ preds[,v] <- do.call('predict',
+ list(m,test[,c(tgt,varsSets[[v]])]))

+ }

+ }

+ ps <- apply(preds,1,function(x)

+ levels(factor(x))[which.max(table(factor(x)))])

+ ps <- factor(ps,

+ levels=1:nlevels(train[,tgt]),

+ labels=levels(train[,tgt]))

+ if (verb) structure(ps,ensemblePreds=preds) else ps

+ }

The first arguments of this function are the name of the target variable,
the training set, and the test set. The next argument (varsSets) is a list
containing the sets of variable names (the obtained clusters) from which we
should sample a variable to generate the predictors of each member of the
ensemble. Finally, we have two arguments (baseLearner and blPars) that
provide the name of the function that implements the learner to be used
on each member of the ensemble and respective list of learning arguments.
The result of the function is the set of predictions of the ensemble for the
given test set. These predictions are obtained by a voting mechanism among
the members of the ensemble. The difference between the members of the
ensemble lies only in the predictors that are used, which are determined by
the varsSets parameters. These sets result from a variable clustering process,
as mentioned in Section 5.3.4.

Given the similarity of the tasks to be carried out by each of the learners,
we have created a single user-defined modeling function that will receive as one
of the parameters the learner that is to be used. The function genericModel()
that we present below implements this idea:

> genericModel <- function(form,train,test,

+ learner,

+ fs.meth,

+ ...)

+ {

+ cat('=')
+ tgt <- as.character(form[[2]])

+ tgtCol <- which(colnames(train)==tgt)

Classifying Microarray Samples 261

+

+ # Anova filtering

+ f <- Anova(train[,tgt],p=0.01)

+ ff <- filterfun(f)

+ genes <- genefilter(t(train[,-tgtCol]),ff)

+ genes <- names(genes)[genes]

+ train <- train[,c(tgt,genes)]

+ test <- test[,c(tgt,genes)]

+ tgtCol <- 1

+

+ # Specific filtering

+ if (fs.meth[[1]]=='varclus') {

+ require(Hmisc,quietly=T)

+ v <- varclus(as.matrix(train[,-tgtCol]))

+ VSs <- lapply(1:fs.meth[[3]],function(x)

+ getVarsSet(v$hclust,nvars=fs.meth[[2]]))

+ pred <- varsEnsembles(tgt,train,test,VSs,learner,list(...))

+

+ } else {

+ if (fs.meth[[1]]=='rf') {

+ require(randomForest,quietly=T)

+ rf <- randomForest(form,train,importance=T)

+ imp <- importance(rf)

+ imp <- imp[,ncol(imp)-1]

+ rf.genes <- names(imp)[order(imp,decreasing=T)[1:fs.meth[[2]]]]

+ train <- train[,c(tgt,rf.genes)]

+ test <- test[,c(tgt,rf.genes)]

+ }

+

+ if (learner == 'knn')
+ pred <- kNN(form,

+ train,

+ test,

+ norm.stats=list(rowMedians(t(as.matrix(train[,-tgtCol]))),

+ rowIQRs(t(as.matrix(train[,-tgtCol])))),

+ ...)

+ else {

+ model <- do.call(learner,c(list(form,train),list(...)))

+ pred <- if (learner != 'randomForest') predict(model,test)

+ else predict(model,test,type='response')
+ }

+

+ }

+

+ c(accuracy=ifelse(pred == resp(form,test),100,0))

+ }

This user-defined function will be called from within the LOOCV routines
for each iteration of the process. The experiments with all these variants on

262 Data Mining with R: Learning with Case Studies

the microarray data will take a long time to complete.4 In this context, we do
not recommend that you run the following experiments unless you are aware
of this temporal constraint. The objects resulting from this experiment are
available at the book Web page so that you are able to proceed with the rest
of the analysis without having to run all these experiments. The code to run
the full experiments is the following:

> require(class,quietly=TRUE)

> require(randomForest,quietly=TRUE)

> require(e1071,quietly=TRUE)

> load('myALL.Rdata')
> es <- exprs(ALLb)

> # simple filtering

> ALLb <- nsFilter(ALLb,

+ var.func=IQR,var.cutoff=IQR(as.vector(es))/5,

+ feature.exclude="^AFFX")

> ALLb <- ALLb$eset

> # the dataset

> featureNames(ALLb) <- make.names(featureNames(ALLb))

> dt <- data.frame(t(exprs(ALLb)),Mut=ALLb$mol.bio)

> DSs <- list(dataset(Mut ~ .,dt,'ALL'))
> # The learners to evaluate

> TODO <- c('knn','svm','randomForest')
> for(td in TODO) {

+ assign(td,

+ experimentalComparison(

+ DSs,

+ c(

+ do.call('variants',
+ c(list('genericModel',learner=td),
+ vars[[td]],

+ varsRootName=td))

+),

+ loocvSettings(seed=1234,verbose=F)

+)

+)

+ save(list=td,file=paste(td,'Rdata',sep='.'))
+ }

This code uses the function experimentalComparison() to test all vari-
ants using the LOOCV method. The code uses the function variants() to
generate all learner objects from the variants provided by the components
of list vars that we have seen above. Each of these variants will be evaluated
by an LOOCV process. The results of the code are three compExp objects
with the names knn, svm, and randomForest. Each of these objects contains
the results of the variants of the respective learner. All of them are saved in
a file with the same name as the object and extension “.Rdata”. These are

4On my standard desktop computer it takes approximately 3 days.

Classifying Microarray Samples 263

the files that are available at the book Web site, so in case you have not run
all these experiments, you can download them into your computer, and load
them into R using the load() function (indicating the name of the respective
file as argument):

> load("knn.Rdata")

> load("svm.Rdata")

> load("randomForest.Rdata")

The results of all variants of a learner are contained in the respective object.
For instance, if you want to see which were the best SVM variants, you may
issue

> rankSystems(svm, max = T)

$ALL

ALLaccuracy

system score

1 svm.v2 86.17021

2 svm.v3 86.17021

3 svm.v5 86.17021

4 svm.v6 86.17021

5 svm.v9 86.17021

The function rankSystems() takes an object of class compExp and obtains
the best performing variants for each of the statistics that were estimated in
the experimental process. By default, the function assumes that “best” means
smaller values. In case of statistics that are to be maximized, like accuracy,
we can use the parameter max as we did above.5

In order to have an overall perspective of all trials, we can join the three
objects:

> all.trials <- join(svm, knn, randomForest, by = "variants")

With the resulting compExp object we can check the best overall score of
our trials:

> rankSystems(all.trials, top = 10, max = T)

$ALL

ALLaccuracy

system score

1 knn.v2 88.29787

2 knn.v3 87.23404

3 randomForest.v4 87.23404

4 randomForest.v6 87.23404

5In case we measure several statistics, some that are to be minimized and others maxi-
mized, the parameter max accepts a vector of Boolean values.

264 Data Mining with R: Learning with Case Studies

5 svm.v2 86.17021

6 svm.v3 86.17021

7 svm.v5 86.17021

8 svm.v6 86.17021

9 svm.v9 86.17021

10 svm.v23 86.17021

The top score is obtained by a variant of the k-nearest neighbor method.
Let us check its characteristics:

> getVariant("knn.v2", all.trials)

Learner:: "genericModel"

Parameter values

learner = "knn"

k = 5

norm = TRUE

fs.meth = list("rf", 30)

This variant uses 30 genes filtered by a random forest, five neighbors and
normalization of the gene expression values. It is also interesting to observe
that among the top ten scores, only the last one (“svm.v23”) does not use
the 30 genes filtered with a random forest. This tenth best model uses all
genes resulting from the ANOVA filtering. However, we should note that the
accuracy scores among these top ten models are rather similar. In effect, given
that we have 94 test cases, the accuracy of the best model means that it made
11 mistakes, while the model on the tenth position makes 13 errors.

It may be interesting to know which errors were made by the models, for
instance, the best model. Confusion matrices (see page 120) provide this type
of information. To obtain a confusion matrix we need to know what the actual
predictions of the models are. Our user-defined function does not output the
predicted classes, only the resulting accuracy. As a result, the compExp objects
do not have this information. In case we need this sort of extra information, on
top of the evaluation statistics measured on each iteration of the experimental
process, we need to make the user-defined functions return it back to the
experimental comparison routines. These are prepared to receive and store
this extra information, as we have seen in Chapter 4. Let us imagine that
we want to know the predictions of the best model on each iteration of the
LOOCV process. The following code allows us to obtain such information.
The code focuses on the best model but it should be easily adaptable to any
other model.

> bestknn.loocv <- function(form,train,test,...) {

+ require(Biobase,quietly=T)

+ require(randomForest,quietly=T)

+ cat('=')
+ tgt <- as.character(form[[2]])

Classifying Microarray Samples 265

+ tgtCol <- which(colnames(train)==tgt)

+ # Anova filtering

+ f <- Anova(train[,tgt],p=0.01)

+ ff <- filterfun(f)

+ genes <- genefilter(t(train[,-tgtCol]),ff)

+ genes <- names(genes)[genes]

+ train <- train[,c(tgt,genes)]

+ test <- test[,c(tgt,genes)]

+ tgtCol <- 1

+ # Random Forest filtering

+ rf <- randomForest(form,train,importance=T)

+ imp <- importance(rf)

+ imp <- imp[,ncol(imp)-1]

+ rf.genes <- names(imp)[order(imp,decreasing=T)[1:30]]

+ train <- train[,c(tgt,rf.genes)]

+ test <- test[,c(tgt,rf.genes)]

+ # knn prediction

+ ps <- kNN(form,train,test,norm=T,

+ norm.stats=list(rowMedians(t(as.matrix(train[,-tgtCol]))),

+ rowIQRs(t(as.matrix(train[,-tgtCol])))),

+ k=5,...)

+ structure(c(accuracy=ifelse(ps == resp(form,test),100,0)),

+ itInfo=list(ps)

+)

+ }

> resTop <- loocv(learner('bestknn.loocv',pars=list()),
+ dataset(Mut~.,dt),

+ loocvSettings(seed=1234,verbose=F),

+ itsInfo=T)

The bestknn.loocv() function is essentially a specialization of the func-
tion genericModel() we have seen before, but focused on 5-nearest neighbors
with random forest filtering and normalization using medians and IQRs. Most
of the code is the same as in the genericModel() function, the only exception
being the result that is returned. This new function, instead of returning the
vector with the accuracy of the model, returns a structure. We have seen be-
fore that structures are R objects with appended attributes. The structure()
function allows us to create such “enriched” objects by attaching to them a
set of attributes. In the case of our user-defined functions, if we want to re-
turn some extra information to the loocv() function, we should do it on an
attribute named itInfo. In the function above we are using this attribute to
return the actual predictions of the model. The loocv() function stores this
information for each iteration of the experimental process. In order for this
storage to take place, we need to call the loocv() function with the optional
parameter itsInfo=T. This ensures that whatever is returned as an attribute
with name itInfo by the user-defined function, it will be collected in a list
and returned as an attribute named itsInfo of the result of the loocv()

266 Data Mining with R: Learning with Case Studies

function. In the end, we can inspect this information and in this case see what
were the actual predictions of the best model on each iteration.

We can check the content of the attribute containing the wanted informa-
tion as follows (we are only showing the first 4 predictions):

> attr(resTop, "itsInfo")[1:4]

[[1]]

[1] BCR/ABL

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[2]]

[1] NEG

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[3]]

[1] BCR/ABL

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

[[4]]

[1] ALL1/AF4

Levels: ALL1/AF4 BCR/ABL E2A/PBX1 NEG

The function attr() allows us to obtain the value of any attribute of an
R object. As you see, the itsInfo attribute contains the predictions of each
iteration of the LOOCV process. Using this information together with the true
value of the class of the dataset, we can obtain the confusion matrix:

> preds <- unlist(attr(resTop, "itsInfo"))

> table(preds, dt$Mut)

preds ALL1/AF4 BCR/ABL E2A/PBX1 NEG

ALL1/AF4 10 0 0 0

BCR/ABL 0 33 0 4

E2A/PBX1 0 0 3 1

NEG 0 4 2 37

The confusion matrix can be used to inspect the type of errors that the
model makes. For instance, we can observe that the model correctly predicts
all cases with the ALL1/AF4 mutation. Moreover, we can also observe that
most of the errors of the model consist of predicting the class NEG for a case
with some mutation. Nevertheless, the reverse also happens with five samples
with no mutation, incorrectly predicted as having some abnormality.

Classifying Microarray Samples 267

5.5 Summary

The primary goal of this chapter was to introduce the reader to an impor-
tant range of applications of data mining that receives a lot of attention from
the R community: bioinformatics. In this context, we explored some of the
tools of the project Bioconductor, which provides a large set of R packages
specialized for this type of applications. As a concrete example, we addressed
a bioinformatics predictive task: to forecast the type of genetic mutation as-
sociated with samples of patients with B-cell acute lymphoblastic leukemia.
Several classification models were obtained based on information concerning
the expression levels on a set of genes resulting from microarray experiments.
In terms of data mining concepts, this chapter focused on the following main
topics:

• Feature selection methods for problems with a very large number of
predictors

• Classification methods

• Random forests

• k-Nearest neighbors

• SVMs

• Ensembles using different subsets of predictors

• Leave-one-out cross-validation experiments

With respect to R, we have learned a few new techniques, namely,

• How to handle microarray data

• Using ANOVA tests to compare means across groups of data

• Using random forests to select variables in classification problems

• Clustering the variables of a problem

• Obtaining ensembles with models learned using different predictors

• Obtaining k-nearest neighors models

• Estimating the accuracy of models using leave-one-out cross-validation.

