
Chapter 3:

Pairwise Sequence Alignment



Learning objectives

Upon completion of this material , you should be able to:

• define homology as well as orthologs and paralogs; 

• explain how PAM (accepted point mutation) matrices are 

derived; 

• contrast the utility of PAM and BLOSUM scoring matrices; 

• define dynamic programming and explain how global 

(Needleman–Wunsch) and local (Smith–Waterman) 

pairwise alignments are performed; and 

• perform pairwise alignment of protein or DNA sequences 

at the NCBI website. 
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• It is used to decide if two proteins (or genes) are 

related structurally or functionally

• It is used to identify domains or motifs that are shared 

between proteins

• It is the basis of BLAST searching

• It is used in the analysis of genomes

Pairwise sequence alignment is the most 

fundamental operation of bioinformatics



Sequence alignment: protein sequences

can be more informative than DNA

• protein is more informative (20 vs 4 characters);

many amino acids share related biophysical properties

• codons are degenerate: changes in the third position

often do not alter the amino acid that is specified

• protein sequences offer a longer “look-back” time

Example: 

--searching for plant globins using human beta globin 

DNA yields no matches; 

--searching for plant globins using human beta globin

protein yields many matches



Pairwise alignment: DNA sequences

can be more informative than protein

• Many times, DNA alignments are appropriate

--to study noncoding regions of DNA

(e.g. introns or intergenic regions)

--to study DNA polymorphisms

--genome sequencing relies on DNA analysis



Pairwise alignment 
The process of lining up two sequences 

to achieve maximal levels of identity 

(and conservation, in the case of amino acid sequences) 

for the purpose of assessing the degree of similarity 

and the possibility of homology.

Definition: pairwise alignment



Definitions: identity, similarity, conservation

Identity
The extent to which two (nucleotide or amino acid) sequences 

are invariant.

Similarity
The extent to which nucleotide or protein sequences are 

related. It is based upon identity plus conservation.

Conservation
Changes at a specific position of an amino acid or (less 

commonly, DNA) sequence that preserve the physico-

chemical properties of the original residue.

Homology
Similarity attributed to descent from a common ancestor.



Globin homologs

myoglobin

hemoglobin

beta globin beta globin and myoglobin (aligned)
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Orthologs
Homologous sequences in different species 

that arose from a common ancestral gene 

during speciation; may or may not be responsible 

for a similar function. 

Paralogs
Homologous sequences within a single species 

that arose by gene duplication. 

Definitions: two types of homology 



Myoglobin proteins: examples of orthologs



Paralogs: members of a gene (protein) family within a

species. This tree shows human globin paralogs.



Orthologs and paralogs are often viewed in a single tree

Source: NCBI



General approach to pairwise alignment

• Choose two sequences

• Select an algorithm that generates a score

• Allow gaps (insertions, deletions)

• Score reflects degree of similarity

• Alignments can be global or local

• Estimate probability that the alignment occurred by chance



Find BLAST from the home page of NCBI 

and select protein BLAST…



Choose align two 

or more 

sequences…

https://www.ncbi.nlm.

nih.gov/protein/NP_00

0509.1

hemoglobin subunit 

beta [Homo sapiens]

And 

https://www.ncbi.nlm.

nih.gov/protein/np_00

5359

myoglobin [Homo 

sapiens]

https://www.ncbi.nlm.nih.gov/protein/NP_000509.1
https://www.ncbi.nlm.nih.gov/protein/np_005359


Enter the two sequences (as 
accession numbers or in the 
fasta format) and click 
BLAST.

Optionally select “Algorithm 
parameters” and note the 
matrix option.



sequence

Year



BLAST output



Pairwise alignment of human beta globin (the 

“query”) and myoglobin (the “subject”)



How raw scores are calculated: an example

For a set of aligned residues we assign scores based on 

matches, mismatches, gap open penalties, and gap extension 

penalties. These scores add up to the total raw score.



Where do scores come from? We’ll examine scoring matrices. 

These are related to the properties of the 20 common amino 

acids.
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• Positions at which a letter is paired with a null 

are called gaps. 

•  Gap scores are typically negative. 

• Since a single mutational event may cause the insertion 

or deletion of more than one residue, the presence of 

a gap is ascribed more significance than the length 

of the gap. Thus there are separate penalties for gap

creation and gap extension. 

• In BLAST, it is rarely necessary to change gap values 

from the default.

Gaps
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Pairwise alignment and the evolution of life

When two proteins (or DNA sequences) are homologous 

they share a common ancestor. We can infer the sequence 

of that ancestor. When we align globins from human and a 

plant we can imagine their common ancestor, a single 

celled organism that lived 1.5 billion years ago, and we can 

infer that ancient globin sequence. Through pairwise 

alignment we can look back in time at sequence evolution.
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Step 1: Accepted point mutations (PAMs) in protein families

Margaret Dayhoff and colleagues developed scoring matrices in 
the 1960s and 1970s. They defined PAMs as “accepted point 
mutations.” Some protein families evolve very slowly (e.g. 
histones change little over 100 million years); others (such as 
kappa casein) change very rapidly. 



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

Ig kappa chain 37
Kappa casein 33
luteinizing hormone b 30
lactalbumin 27
complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21
haptoglobin alpha 20
serum albumin 19
phospholipase A2, group IB 19
prolactin 17
carbonic anhydrase C 16
Hemoglobin a 12
Hemoglobin b 12



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

Ig kappa chain 37
Kappa casein 33
luteinizing hormone b 30
lactalbumin 27
complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21
haptoglobin alpha 20
serum albumin 19
phospholipase A2, group IB 19
prolactin 17
carbonic anhydrase C 16
Hemoglobin a 12
Hemoglobin b 12

human (NP_005203) versus mouse (NP_031812) kappa casein



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

apolipoprotein A-II 10
lysozyme 9.8
gastrin 9.8
myoglobin 8.9
nerve growth factor 8.5
myelin basic protein 7.4
thyroid stimulating hormone b 7.4
parathyroid hormone 7.3
parvalbumin 7.0
trypsin 5.9
insulin 4.4
calcitonin 4.3
arginine vasopressin 3.6
adenylate kinase 1 3.2



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

triosephosphate isomerase 1 2.8
vasoactive intestinal peptide 2.6
glyceraldehyde phosph. dehydrogease 2.2
cytochrome c 2.2
collagen 1.7
troponin C, skeletal muscle 1.5
alpha crystallin B chain 1.5
glucagon 1.2
glutamate dehydrogenase 0.9
histone H2B, member Q 0.9
ubiquitin 0



Step 1: accepted point mutations are defined not by the 

pairwise alignment but with respect to the common ancestor

Dayhoff et al. evaluated amino acid changes. They applied an 

evolutionary model to compare changes such as 1 versus 2 not to 

each other but to an inferred common ancestor at position 5.



If 20 amino acids occurred in nature at equal frequencies, 

each would be observed 5% of the time. However some 

are more common (G, A, L, K) and some rare (C, Y, M, W).
https://molbiol-tools.ca/Amino_acid_abbreviations.htm

Dayhoff model step 2 (of 7): Frequency of amino 

acids

https://molbiol-tools.ca/Amino_acid_abbreviations.htm


Normalized frequencies of amino acids:

Gly 8.9% Arg 4.1%

Ala 8.7% Asn 4.0%

Leu 8.5% Phe 4.0%

Lys 8.1% Gln 3.8%

Ser 7.0% Ile 3.7%

Val 6.5% His 3.4%

Thr 5.8% Cys 3.3%

Pro 5.1% Tyr 3.0%

Glu 5.0% Met 1.5%

Asp 4.7% Trp 1.0%



Dayhoff model step 3: amino acid substitutions

From a survey of 1572 observed substitutions, the original 

amino acid (columns) are compared to the changes (rows).



Zooming in on the previous table, note that substitutions 
are very common (e.g. D  E, A  G) while others are 
rare (e.g. C  Q, C  E). The scoring system we use for 
pairwise alignments should reflect these trends.

Dayhoff model step 3: amino acid substitutions



Dayhoff step 4 (of 7): Mutation probability matrix for 

the evolutionary distance of 1 PAM

This mutation probability matrix includes original amino 

acids (columns) and replacements (rows). The diagonals 

show that at a distance of 1 PAM most residues remain 

the same about 99% of the time (see shaded entries). 

Note how cysteine (C) and tryptophan (W) undergo few 

substitutions, and asparagine (N) many.



A substitution matrix contains values proportional 

to the probability that amino acid i mutates into 

amino acid j for all pairs of amino acids. 

Substitution matrices are constructed by assembling 

a large and diverse sample of verified pairwise alignments

(or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities 

of mutations occurring through a period of evolution. 

The two major types of substitution matrices are

PAM and BLOSUM.

Substitution Matrix



PAM matrices are based on global alignments 

of closely related proteins. 

The PAM1 is the matrix calculated from comparisons 

of sequences with no more than 1% divergence. At an 

evolutionary interval of PAM1, one change has occurred 

over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAM1. For 

PAM250, 250 changes have occurred for two proteins over 

a length of 100 amino acids.

All the PAM data come from closely related proteins

(>85% amino acid identity).

PAM matrices:

Point-accepted mutations



Dayhoff step 4 (of 7): Mutation probability matrix for 

the evolutionary distance of 1 PAM

At this evolutionary distance of 1 PAM, 1% of the amino 

acids have diverged between each pair of sequences. The 

columns are percentages that sum to 100%.



Consider a multiple alignment of glyceraldehyde 3-

phosphate protein sequences. Some substitutions are 

observed in columns (arrowheads). These give us insight 

into changes tolerated by natural selection.

Dayhoff step 5 (of 7): PAM250 and other PAM matrices



Now consider the alignment of distantly related kappa 

caseins. There are few conserved column positions, and 

many some columns (double arrowheads) have five 

different residues among the 7 proteins. We want to design 

a scoring system that is tolerant of distantly related 

proteins: if the scoring system is too strict then the 

divergent sequences may be penalized so heavily that 

authentic homologs are not identified or aligned.

Dayhoff step 5 (of 7): PAM250 and other PAM matrices



At the extreme of perfectly conserved proteins (PAM0) 
there are no amino acid replacements. At the extreme of 
completely diverged proteins (PAM∞) the matrix converges 
on the background frequencies of the amino acids.

Dayhoff step 5 (of 7): PAM250 and other PAM matrices



PAM250 matrix: for proteins that share ~20% identity 

Compare this to a PAM1 matrix, and note the diagonal still 

has high scores but much information content is lost.



A relatedness odds matrix reports the probability that 

amino acid j will change to i in a homologous sequence.

The numerator models the observed change. The 

denominator fi is the probability of amino acid residue i

occurring in the second sequence by chance.

A positive value indicates a replacement happens more 

often than expected by chance. A negative value indicates 

the replacement is not favored.

Dayhoff step 6 (of 7): from a mutation probability 

matrix to a relatedness odds matrix



Why do we go from a mutation probability

matrix to a log odds matrix?

• We want a scoring matrix so that when we do a pairwise

alignment (or a BLAST search) we know what score to

assign to two aligned amino acid residues.

• Logarithms are easier to use for a scoring system.  They 

allow us to sum the scores of aligned residues (rather 

than having to multiply them).



This is a useful matrix for comparing distantly related 

proteins. Note that an alignment of two tryptophan (W) 

residues earns +17 and a W to T mismatch is -5.

Log-odds matrix for PAM250



Log-odds matrix for PAM10

This is an example of a scoring matrix with “severe” 

penalties. A match of W to W earns +13, but a mismatch 

(e.g. W aligned to T) has a score of -19, far lower than in 

PAM250.



BLOSUM62 scoring matrix

BL62 is the default scoring matrix at the NCBI BLAST site.



BLOSUM matrices are based on local alignments.

All BLOSUM matrices are based on observed alignments; 

they are not extrapolated from comparisons of 

closely related proteins. 

BLOSUM stands for blocks substitution matrix.

BLOSUM62 is a matrix calculated from comparisons of 

sequences with no less than 62% divergence. 

BLOSUM62 is the default matrix in BLAST 2.0.

BLOSUM Matrices



BLOSUM Matrices
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Summary of PAM and BLOSUM matrices

A higher PAM number, and a lower BLOSUM number, 

tends to correspond to a matrix tuned to more divergent 

proteins.
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We will first consider the global alignment algorithm

of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm

of Smith and Waterman (1981).

BLAST, a heuristic version of Smith-Waterman.

Two kinds of sequence alignment: global and local



• Two sequences can be compared in a matrix

along x- and y-axes.

• If they are identical, a path along a diagonal 

can be drawn

• Find the optimal subpaths, and add them up to achieve

the best score. This involves

--adding gaps when needed

--allowing for conservative substitutions

--choosing a scoring system (simple or complicated)

• N-W is guaranteed to find optimal alignment(s) 

Global alignment with the algorithm

of Needleman and Wunsch (1970)



[1] set up a matrix

[2] score the matrix

[3] identify the optimal alignment(s)

Three steps to global alignment 

with the Needleman-Wunsch algorithm



[1] identity (stay along a diagonal)

[2] mismatch (stay along a diagonal)

[3] gap in one sequence (move vertically!)

[4] gap in the other sequence (move horizontally!)

Four possible outcomes in aligning two sequences

B&FG 3e

Fig. 3-20

Page 97



B&FG 3e

Fig. 3-20

Page 97

Four possible outcomes in aligning two sequences



Global pairwise alignment using Needleman-Wunsch

Identify positions of identity (shaded gray).



B&FG 3e

Fig. 3-21

Page 98

Global pairwise alignment using Needleman-Wunsch

Define an overall score that maximizes cumulative scores at 

each position of the pairwise alignment,  allowing for 

substitutions and gaps in either sequence. 



B&FG 3e

Fig. 3-21

Page 98

Global pairwise alignment using Needleman-Wunsch

To decide how to align sequences 1 and 2 in the box at lower 
right, decide what the scores are beginning at upper left (not 
requiring a gap), or beginning from the left or top (each 
requiring a gap penalty).



B&FG 3e

Fig. 3-21

Page 98

Global pairwise alignment using Needleman-Wunsch

Here the best score involves +1 (proceed from upper left to 

gray, lower right square). If we instead select an alignment 

involving a gap the score would be worse (-4). 



B&FG 3e

Fig. 3-21

Page 98

Global pairwise alignment using Needleman-Wunsch

Proceed to calculate the optimal score for the next position.



B&FG 3e

Fig. 3-21

Page 98

Global pairwise alignment using Needleman-Wunsch

Continue filling in the matrix.



Global pairwise alignment using Needleman-Wunsch

Highlighted cells indicate the optimal path (best scores), 

indicating how the two sequences should be aligned.



Global pairwise alignment using Needleman-Wunsch

Equivalent representation, showing the traceback procedure: 

begin at the lower right cell and proceed back to the start.



Global pairwise alignment using Needleman-Wunsch

Equivalent representation, showing the traceback procedure: 

begin at the lower right cell and proceed back to the start.



N-W is guaranteed to find optimal alignments, although 

the algorithm does not search all possible alignments.

It is an example of a dynamic programming algorithm:

an optimal path (alignment) is identified by

incrementally extending optimal subpaths.

Thus, a series of decisions is made at each step of the

alignment to find the pair of residues with the best score.

Needleman-Wunsch: dynamic programming



Global alignment (Needleman-Wunsch) extends

from one end of each sequence to the other.

Local alignment finds optimally matching 

regions within two sequences (“subsequences”).

Local alignment is almost always used for database

searches such as BLAST. It is useful to find domains

(or limited regions of homology) within sequences.

Smith and Waterman (1981) solved the problem of 

performing optimal local sequence alignment. Other

methods (BLAST, FASTA) are faster but less thorough.

Global alignment versus local alignment



B&FG 3e

Fig. 3-23

Page 101

Global alignment (top) includes matches 

ignored by local alignment (bottom)

NP_824492, NP_337032

Global:

15% identity

Local:

30% identity
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How the Smith-Waterman algorithm works

Set up a matrix between two proteins (size m+1, n+1)

No values in the scoring matrix can be negative! S > 0

The score in each cell is the maximum of four values:

[1] s(i-1, j-1) + the new score at [i,j] (a match or mismatch)

[2] s(i,j-1) – gap penalty

[3] s(i-1,j) – gap penalty

[4] zero  this is not in Needleman-Wunsch



[1] Galaxy offers “needle” and “water” EMBOSS 

programs. 

[2] EBI offers needle and water. 

http://www.ebi.ac.uk/Tools/psa/

[3] Try using SSEARCH to perform a rigorous Smith-

Waterman local alignment:

http://fasta.bioch.virginia.edu/

[4] Next-generation sequence aligners incorporate 

Smith-Waterman in some specialized steps.

Where to use the Smith-Waterman algorithm



Rapid, heuristic versions of Smith-Waterman:

FASTA and BLAST

Smith-Waterman is very rigorous and it is guaranteed

to find an optimal alignment. 

But Smith-Waterman is slow. It requires computer

space and time proportional to the product of the two

sequences being aligned (or the product of a query 

against an entire database). 

Gotoh (1982) and Myers and Miller (1988) improved the

algorithms so both global and local alignment require

less time and space.

FASTA and BLAST provide rapid alternatives to S-W. 
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B&FG 3e

Fig. 3-25
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Pairwise alignment with dotplots

A human globin searched against itself produces a unit 

diagonal on a dot plot (NCBI BLASTP, aligning 2 sequences).



Pairwise alignment with dotplots

Search human cytoglobin against a large snail globin (having 
many globin repeats). More repeats are observed using PAM250 
than BLOSUM62.

To “read” this plot note that cytoglobin (x-axis) matches the 
snail globin (y-axis) at about a dozen locations across the snail 
protein. Red arrows indicate that the first few and last few 
amino acids of cytoglobin do not participate in this repeat 
structure.



Pairwise alignment with dotplots

BLASTP output includes the various sequence alignments. One 
is shown here: human cytoglobin (residues 18-154) aligns to the 
snail globin (at residues 1529-1669). The expect value is 
convincing (4e-13), and this is one of a dozen sequence 
alignments.

Conclusion: the dotplot is an excellent way to visualize complex 
repeats.



Outline

Introduction

Protein alignment: often more informative than DNA alignment 

Definitions: homology, similarity, identity 

Gaps 

Pairwise alignment, homology, and evolution of life 

Scoring matrices 

Dayhoff model: 7 steps

Pairwise alignment and limits of detection: the “twilight zone” 

Alignment algorithms: global and local 

Global sequence alignment: algorithm of Needleman and 

Wunsch

Local sequence alignment: Smith and Waterman algorithm 

Rapid, heuristic versions of Smith–Waterman: FASTA and BLAST

Basic Local Alignment Search Tool (BLAST) 

Pairwise alignment with dotplots

The statistical significance of pairwise alignments

Statistical significance of global alignments 

Percent identity and relative entropy 

Perspective



Statistical significance of pairwise alignments

Sensitivity = TP / (TP + FN)
Specificity = TN / (TN + FP) 



Statistical significance of pairwise alignments

The statistical significance of global alignments is not well 
described. We can apply a z-score.

For local alignment the statistical significance is thoroughly 
understood. 



Perspective

Pairwise alignment is a fundamental problem in 
bioinformatics. We discussed concepts of homology, and 
global versus local alignment (e.g. Needleman-Wunsch
versus Smith-Waterman algorithms). 



We end with a remarkable scoring matrix reported by 
Zuckerkandl and Pauling in 1965, soon after the very first 
protein sequences were identified. While the data set was 
very sparse, these authors already found patterns of amino 
acid substitutions that occur in nature.


