Chapter 3:
Pairwise Sequence Alignment



Learning objectives

Upon completion of this material , you should be able to:

* define homology as well as orthologs and paralogs;

* explain how PAM (accepted point mutation) matrices are
derived;

* contrast the utility of PAM and BLOSUM scoring matrices;

* define dynamic programming and explain how global
(Needleman—Wunsch) and local (Smith—VWaterman)
pairwise alignments are performed;and

* perform pairwise alignment of protein or DNA sequences
at the NCBI website.



Outline

Introduction
Protein alighment: often more informative than DNA alighment

Definitions: homology, similarity, identity
Gaps
Pairwise alignment, homology, and evolution of life
Scorlng matrices
Dayhoff model: 7 steps
Pairwise alignment and limits of detection: the “twilight zone”
Allgnment algorithms: global and local
Global sequence alignment: algorithm of Needleman and
Wunsch
Local sequence alignment: Smith and Waterman algorithm
Rapid, heuristic versions of Smith—Waterman: FASTA and BLAST
Basic Local Alignment Search Tool (BLAST)
Pairwise alignment with dotplots
The statistical significance of pairwise alignments
Statistical significance of global alignments
Percent identity and relative entropy
Perspective




Pairwise sequence alignment is the most
fundamental operation of bioinformatics

* It is used to decide if two proteins (or genes) are
related structurally or functionally

* It is used to identify domains or motifs that are shared
between proteins

* It is the basis of BLAST searching

* It is used in the analysis of genomes



Sequence alignment: protein sequences
can be more informative than DNA

* protein is more informative (20 vs 4 characters);
many amino acids share related biophysical properties

* codons are degenerate: changes in the third position
often do not alter the amino acid that is specified

* protein sequences offer a longer “look-back” time

Example:

--searching for plant globins using human beta globin
DNA yields no matches;

--searching for plant globins using human beta globin
protein yields many matches



Pairwise alignment: DNA sequences
can be more informative than protein

* Many times, DNA alignments are appropriate

--to study noncoding regions of DNA
(e.g.introns or intergenic regions)

--to study DNA polymorphisms

--genome sequencing relies on DNA analysis



Definition: pairwise alignment

Pairwise alignment

The process of lining up two sequences

to achieve maximal levels of identity

(and conservation, in the case of amino acid sequences)
for the purpose of assessing the degree of similarity
and the possibility of homology.



Definitions: identity, similarity, conservation

Homology

Similarity attributed to descent from a common ancestor.

|dentity
The extent to which two (nucleotide or amino acid) sequences
are invariant.

Similarity
The extent to which nucleotide or protein sequences are
related. It is based upon identity plus conservation.

Conservation

Changes at a specific position of an amino acid or (less
commonly, DNA) sequence that preserve the physico-
chemical properties of the original residue.



Globin homologs

(a) Human myoglobin (3RGK) (b) Human hemoglobin tetramer (2H35)

myoglobin

hemoglobin

(c) Human beta globin (subunit of 2H35) (d) Pairwise alignment of beta globin and myoglobin

beta globin beta globin and myoglobin (aligned)
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Definitions: two types of homology

Orthologs

Homologous sequences in different species

that arose from a common ancestral gene
during speciation; may or may not be responsible
for a similar function.

Paralogs
Homologous sequences within a single species
that arose by gene duplication.



Myoglobin proteins: examples of orthologs
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Paralogs: members of a gene (protein) family within a
species. This tree shows human globin paralogs.
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Orthologs and paralogs are often viewed in a single tree
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General approach to pairwise alignment

* Choose two sequences

* Select an algorithm that generates a score

* Allow gaps (insertions, deletions)

* Score reflects degree of similarity

* Alignments can be global or local

* Estimate probability that the alignment occurred by chance



Popular Resources Find BLAST from the home page of NCBI
PubMed and select protein BLAST...

FubiMed Central
helf ;'__, BLAST

Home @ Recent Results | Saved Strategies | Help

» HCBI/ BLAST Home
Mucleotide BLAST finds regions of similarity between biological sequences. more...
Frotein .
Designing or Testing PCR Primers? Try your search in Primer-BLAST. _Go)
GEO
Conserved Domair
BLAST Assembled Genomes

Choose a species genome to search, or list all genomic BLAST databases.

o Human o Oryza sativa o Gallus gallus
o0 Mouse O Bos taurus O Pan troglodytes
o Rat o Danio rerio o Microbas

o0 Arabidopsis thaliana o Drosophila melanogaster o Apis mellifera
Basic BLAST

Choose a BLAST program to run.

Search a nucleotide database using a nucleotide query

nucleotide hlast ) . .
Algarithens: blastn, megablast, discontiguous megablast

Search protein database using a protein query

tein blast
protein blast Algorithrma: blastp, psi-hlast, phi-blast

hlastx | Search protein databasze using a translated nucleotide query
thlastn | Search translated nucleotide database using a protein query

thlastx | Search translated nucleotide database using a translated nucleotide query




» BLAST
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Choose a BLAST algarithrm e

BLAST Search database nr using Blastp (protein-protein BLAST)

r Show results in a new window

b Algorithm parameters

Choose align two
or more
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hemoglobin subunit
beta [Homo sapiens]

And

myoglobin [Homo
sapiens]


https://www.ncbi.nlm.nih.gov/protein/NP_000509.1
https://www.ncbi.nlm.nih.gov/protein/np_005359
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BLAST output
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Score
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Sbijct

Pairwise alignment of human beta globin (the
“query”) and myoglobin (the “subject”)

= 43.9 bits (102), Expect = le-09, Method: Composition-based stats.
Identities = 37/145 (25%), Positives = 57/145 (39%), Gaps = 2/145 (1%)
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Score = 18
Identities

Query 12
Sbjet 11
match

mismatch

gap open
gap extend

How raw scores are calculated: an example
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= 11/24
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.015, Method: Composition-based stats.

= 12/24 (50%), Gaps = 2/24 (8%)

33

34

sum of matches: +60 {(round up to +61)
sum of mismatches: -13

gum of gap penalties: -13

Lad
Ln

total raw score: el - 13 - 13 =

For a set of aligned residues we assign scores based on
matches, mismatches, gap open penalties, and gap extension
penalties. These scores add up to the total raw score.




Second letter
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Where do scores come from? We’'ll examine scoring matrices.
These are related to the properties of the 20 common amino
acids.
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Gaps

* Positions at which a letter is paired with a null
are called gaps.

* Gap scores are typically negative.

* Since a single mutational event may cause the insertion
or deletion of more than one residue, the presence of
a gap is ascribed more significance than the length
of the gap. Thus there are separate penalties for gap

creation and gap extension.

* In BLAST, it is rarely necessary to change gap values
from the default.
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Pairwise alignment and the evolution of life

Origin Origin Eukaryotes/ Plants/ Invertebrates/
of earth of life bacteria animals vertebrates
| | | |
I | | I
4 3 2 1

Billions of years ago (BYA)

When two proteins (or DNA sequences) are homologous
they share a common ancestor.We can infer the sequence
of that ancestor.When we align globins from human and a
plant we can imagine their common ancestor, a single
celled organism that lived |.5 billion years ago, and we can
infer that ancient globin sequence.Through pairwise
alignment we can look back in time at sequence evolution.
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Step |:Accepted point mutations (PAMs) in protein families

PROTEIN PAMS PER 100 MILLION YEARS
Immunoglobulin (Ig) kappa chain C region 37
Kappa casein 33
Epidermal growth factor 26
Serum albumin 19
Hemoglobin alpha chain 12
Myoglobin 8.9
Nerve growth factor 8.5
Trypsin 5.9
Insulin 4.4
Cytochrome c 2.2
Glutamate dehydrogenase 0.9
Histone H3 0.14
Histone H4 0.10

Margaret Dayhoff and colleagues developed scoring matrices in
the 1960s and 1970s.They defined PAMs as “accepted point
mutations.” Some protein families evolve very slowly (e.g.
histones change little over 100 million years); others (such as
kappa casein) change very rapidly.




Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years
lg kappa chain 37
Kappa casein 33
luteinizing hormone b 30
lactalbumin 27
complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21
haptoglobin alpha 20
serum albumin 19
phospholipase A2, group IB 19
prolactin |7
carbonic anhydrase C |16
Hemoglobin a 12

Hemoglobin b 12



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years

n

ormone b
lactalbumin 27
complement component 3 27
epidermal growth factor 26
proopiomelanocortin 21
pancreatic ribonuclease 21

haptoglobin alpha 20
human (NP_005203) versus mouse (NP_031812) kappa casein

SJoore = 57.8 bits (1381, Expect = Je-07
Identities = 397118 (33%), Positives = 617118 (51%), Gapz = Z/118 (1%)

ouery 1
Shijct 2
Query 61

Shict

el
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MENF IVWVMN ILALTLPFLAAE IQNPDSNCRGEEND INTDEQREVLY TPVESIVLI-FNQYEF 60

NLYQRRPATI-ATNNPYVPRTYTANP AVVEPHAQIPQROQYLPNSHPPTVWRELFNLHFSF 117
N ¥ EP++ L +PT+ ++E &L I + 2 +FN W +P3F
HNYTHYRPSLPATASPYMYYPLVVERELLLLESIPAP ISEWQSHPNFPFQIAGVPTAIPNPSF 118



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years
apolipoprotein A- 10
lysozyme 9.8
gastrin 9.8
myoglobin 8.9
nerve growth factor 8.5
myelin basic protein 7.4
thyroid stimulating hormone b 7.4
parathyroid hormone 7.3
parvalbumin 7.0
trypsin 5.9
insulin 4.4
calcitonin 4.3
arginine vasopressin 3.6

adenylate kinase | 3.2



Dayhoff’s 34 protein superfamilies

Protein PAMs per 100 million years
triosephosphate isomerase | 2.8
vasoactive intestinal peptide 2.6
glyceraldehyde phosph. dehydrogease 2.2
cytochrome c 2.2
collagen .7
troponin C, skeletal muscle |.5
alpha crystallin B chain |.5
glucagon |.2
glutamate dehydrogenase 0.9
histone H2B, member Q - 0.9

< ubiquitin > 0 >




Step |:accepted point mutations are defined not by the
pairwise alignment but with respect to the common ancestor

(a)

beta globin MVHLTPEEKSAVTALWGKV

delta glob in MVHLTPEEKTAVNALWGEV

alpha 1 globin MV.LSPADKTNVKARWGKV

myoglobin MGLSDGEWQLVLNVWGKV

5 MVHLSPEEKTAVHNALWGEKV

6 MVHLTPEEKTAVNALWGEY

b

) ®) beta globin (NP_000509)(1)
® delta globin (NP_000510) (2)

alpha 1 globin (NP_000549) (3)
myoglobin (NP_000539)(4)

Dayhoff et al. evaluated amino acid changes. They applied an
evolutionary model to compare changes such as@versus@)not to
each other but to an inferred common ancestor at position(5)




Dayhoff model step 2 (of 7): Frequency of amino

TABLE 3.1 Normalized frequencies nfamir?c%gé. These values sum to 1. If the 20
amino acids were equally represented in proteins, these values would all be 0.05 (i.e.,
5%); instead, amino acids vary in their frequency of occurrence.

Gly 0.089 Arg 0.041
Ala 0.087 Asn 0.040
Leu 0.085 Phe 0.040
Lys 0.081 Gln 0.038
Ser 0.070 lle 0.037
Val 0.065 His 0.034
Thr 0.058 Cys 0.033
Pro 0.051 Tyr 0.030
Glu 0.050 Met 0.015
Asp 0.047 Trp 0.010

If 20 amino acids occurred in nature at equal frequencies,
each would be observed 5% of the time. However some
are more common (G, A, L, K) and some rare (C,Y, M,W).



https://molbiol-tools.ca/Amino_acid_abbreviations.htm

Normalized frequencies of amino acids:

Gly 8.9% Arg  4.1%
Ala 8.7% Asn  4.0%
Leu  8.5% Phe 4.0%
Lys 8.1% GIn 3.8%
Ser 7.0% lle 3.7%
Val 6.5% His 3.4%
Thr  5.8% Cys 3.3%
Pro 5.1% Tyr  3.0%
Glu 5.0% Met 1.5%

Asp 4.7% Trp 1.0%



Dayhoff model step 3:amino acid substitutions

A R N D C Q E G H I L K M F P S T W Y v
Ala | Arg | Asn | Asp | Cys | Gln | Glu | Gly | His | Ile | Leu | Lys | Met | Phe | Pro | Ser | Thr | Trp | Tyr | Val

A

E 30

N 108 17

D 154 [¢] 532

C 33 10 a a

Q 53 120 50 TE 0

E 2E6 [¢] a4 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 43 10 243 23 10

1 =1 30 T 13 17 A 35 [&] |3

L 55 17 37 a ¥ 75 15 17 40 253

K 57 £77 322 85 0 147 104 &0 23 43 39

M 29 17 a a 0 20 T 7 ]ﬂ 57 207 50

F 20 7 7 a 0 o o 17 20 an 187 i} 17

P 345 &7 27 10 10 53 40 45 50 7 43 43 & 7

S 772 137 432 a8 117 &7 =133 £50 28 20 32 1e8 20 £0 288

T 580 20 168 57 10 37 31 =l 14 128 52 200 28 140 73 E96

W o 27 3 a 0 o o [¢] 3 a 13 i} i 10 a 17 0

Y 20 3 El- a 30 o 10 [¢] 40 13 23 10 i 260 a 22 23 B

A" 365 20 13 17 33 27 37 87 30 661 303 17 7 10 50 43 1886 i} 17
A R N D C Q E G H I L K M F P S T W Y \Y
Ala | Arg (Asn |Asp [Cys (Gln ([Glu Gly His |Ille |Leu |Lys | Met | Phe | Pro |Ser | Thr | Trp | Tyr | Val

From a survey of 1572 observed substitutions, the original
amino acid (columns) are compared to the changes (rows).




Dayhoff model step 3:amino acid substitutions

A R N D C Q E G
Ala | Arg | Asn | Asp | Cys | Gln | Glu | Gly

A

R 30

N 105 17

D 154 #] 532

E' 33 10 a a

Q 93 120 S0 TE 0

E 266 ] G4 831 0 422

G 575 10 156 162 10 30 112

H 21 103 226 43 10 243

23 10

Zooming in on the previous table, note that substitutions
are very common (e.g. D = E,A = G) while others are
rare (e.g. C 2 Q, C = E).The scoring system we use for

pairwise alignments should reflect these trends.




Dayhoff step 4 (of 7): Mutation probability matrix for

the evolutionary distance of | PAM

Orriginal amino acsl

A ] N i) r_' Q E | G | H I L K M F 2 5 0T W ¥ W
Als Arg Asn Asp Cva Cilm il Cily His 1k Lew Ly= hieL Phi Pro Ser Thr T Tyr Wal
A | 987 0.0 0.1 0.1 0.0 0.1 0.2 .2 0.0 0.1 0.0 0.0 0.1 0.0 0.2 0.4 0.3 0.0 0.0 0.2
E (00 99.1 0.0 0.0 0.0 0.1 00 oo 0l 0.0 00 02 0.0 0.0 0.0 .1 | 0.0 0.1 0.0 0.0
No1no 0.0 982 0.4 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0
Lol 0.0 04 98.6 0.0 0.1 (.5 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .1 0.0 0.0 0.0 0.0
o100 0.0 0.0 0.0 0.7 0.0 0.0 .0 .0 0.0 0.0 0.0 0.0 0.0 0.0 .1 0.0 0.0 0.0 0.0
Q0.0 0.1 0.0 0.1 0.0 98.8 (.3 .0 | 0.2 0.0 00 0l 0.0 0.0 (.1 00 00 0.0 0.0 0.0
- LB [0l 0.0 0.1 0.6 0.0 0.4 98.7 | 0.0 .0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
!-s Go1na 0.0 0.1 0.1 0.0 0.0 0.1 99.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1
E H o100 0.1 0.2 0.0 0.0 0.2 0.0 0.0 | 949.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
: 1 0.0 0.0 00 a0 0.0 0.0 00 o0 | 0.0 98.7 0.1 0.0 0.2 0.1 0.0 00 ol 0.0 0.0 0.3
gL |00 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 99.5 [ 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.2
Y 0.4 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 903 |02 0.0 0.0 0.1 01 0.0 0.0 0.0
T (M oo 0.0 oo o0 0.0 0.0 0o o [ 0.0 0.1 0.1 | 0.0 9B.7 0.0 0.0 0.0 00 0.0 0.0 0.0
=¥ oo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.3 0.0
"o 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 9.3 0.1 0.0 0.0 0.0 0.0
5 [ 03 0.1 0.3 0.1 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.2 9E4 04 0.1 0.0 0.0
L 0.0 0.1 0.0 0.0 0.0 0 oo o0 0.1 00 ol 0.1 0.0 0.1 0.3 ] 98.7 0.0 0.0 0.1
w00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Go.8 0.0 0.0
Yo 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0z 0.0 0.0 0.0 0.0 99.5 0.0
Vool 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (.6 0.1 0.0 0.2 Q.0 0.0 0.0 01 0.0 0.0 99.0 |

This mutation probability matrix includes original amino
acids (columns) and replacements (rows). The diagonals
show that at a distance of | PAM most residues remain
the same about 99% of the time (see shaded entries).
Note how cysteine (C) and tryptophan (W) undergo few
substitutions, and asparagine (N) many.




Substitution Matrix

A substitution matrix contains values proportional
to the probability that amino acid i mutates into
amino acid j for all pairs of amino acids.

Substitution matrices are constructed by assembling
a large and diverse sample of verified pairwise alignments
(or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities
of mutations occurring through a period of evolution.

The two major types of substitution matrices are
PAM and BLOSUM.



PAM matrices:
Point-accepted mutations

PAM matrices are based on global alignments
of closely related proteins.

The PAMI is the matrix calculated from comparisons
of sequences with no more than 1% divergence.At an
evolutionary interval of PAMI, one change has occurred
over a length of 100 amino acids.

Other PAM matrices are extrapolated from PAMI. For
PAM250, 250 changes have occurred for two proteins over
a length of 100 amino acids.

All the PAM data come from closely related proteins
(>85% amino acid identity).



Dayhoff step 4 (of 7): Mutation probability matrix for
the evolutionary distance of | PAM

A 4 N ) . o & L& H
Als Arg Asn Asp LCvs Lila Cilw Lilv His
A | 987 (0.0 (1. ] 0.1 0.0 0.1 (0.2 0.2 0.0
B[00 99.1 (0.0 0.0 0.0 0.1 0.0 | 0D 0.1
N ) 0.0 0.0 98.2 0.4 0.0 0.0 (0.1 0l 0.2
DLl (0.0 (0.4 Q8.6 0.0 0.1 (.5 0.1 (.0
C | 0.0 0.0 0.0 0.0 097 0.0 0.0 0.0 0.0
Q0.0 (0.1 0.0 LI 0.0 OE.E (.3 0.0 0.2
- E 0] (0.0 (.1 0.6 0.0 0.4 8.7 dl 0.0 0.0
ﬁ G 0.2 (0.0 (0.1 0.1 0.0 0.0 (.1 99.4 (.0
E H | 0.0 (0.1 (0.2 0.0 0.0 (0.2 0.0 | 00 99.1

At this evolutionary distance of | PAM, 1% of the amino
acids have diverged between each pair of sequences.The
columns are percentages that sum to 100%.
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Dayhoff step 5 (of 7): PAM250 and other PAM matrices
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164
164
162
168
162
162
162
162
162
161
161
170
164
162
16l
166

Y Y V¥ vy Y'VyY V. VY
IHDNFGIVEGILMTTVHAITATQRTVDGP SGKLWRDGRGALQNII
IHDNFGIVEGIMTTVHAITATQRTVDGP SGRLWRDGRGALQNII
IHDHFGIVEGLMTTVHAITATQRTVDGPSGKMWRDGRGAAQNITI
IHDNFGIMEGLMTTVHAITATQRTVDGP SGRLWRDGRGAAQNITI
IHDNFGIVEGLMTTVHAITATQRTVDGPSGKLWRDGRGAAQNITI
IHDNFGIVEGLMTTVHAITATQRTVDGP SGRLWRDGRGAAQNII
IHDNFGIVEGLMTTVHAITATQRTVDGP SGRLWRDGRGAAQNII
IHDNFGIVEGLMTTVHAITATQRTVDGPSGRLWRDGRGAAQNITI
IHDNFGIVEGLMTTVHAITATQRTVDGP SGRLWRDGRGAAQNII
INDNFEIVEGLMTTVHATTATQRTVDGP SGRLWRDGRGAAQNII
INDNFGILEGIMTTVHATTATQRTVDGPSGRLWRDGRGAAQNITI
INDNFGIIEGLMTTVHAVTATQRTVDGP SGRLWRDGRGAGQONII
INDTFGIEEGLMTTVHATTATQRTVDGP SRRDWRGGRGASANII
INDAFGIEEGLMTTVHSLTATQRTVDGP SHRDWRGGRTASGNITI
INDEFGIDEALMTTVHSITATQRTVDGP SHRDWRGGRTASGNII
IHDNFGIIEGLMTTVHAITATQRTVDGPSSKDWRGGRAASFNII

207
207
205
211
205
205
205
205
205
204
204
213
207
205
204
209

Consider a multiple alignment of glyceraldehyde 3-

phosphate protein sequences. Some substitutions are
observed in columns (arrowheads). These give us insight
into changes tolerated by natural selection.




Dayhoff step 5 (of 7): PAM250 and other PAM matrices

<
ol « “

mouse AIPNPSFLAMPTNENQDNTAIPT] x 1 'VAN] EAST
rabbit S--HPFFMAILPNKMQDKAVTPT ; [PT1 EPVVSTEVIAEAS]
sheep PHPHLSFMAIPPKKDQODKTEI] 'PTT EAVVNAVDNPEASS
cattle PHPHLSFMAIPPKKNQDKTEIPT] [PTT------EAVESTVATLEI

pig PRPHASFIAIPPKKNQDKTAIPAIN i ' EPIVNAVVTPEASS
human PNLHPSFIAIPPKKIQDKIIIPTINTIATVEPT--PAPAT--~---EPTVDSVVTPEAFS
horse PCPHPSFIAIPPKKLQEITVIPKINTIATVEPT--PIPTP-————- EPTVNNAVIPDASS

* o X . ® . = 2 * *

Now consider the alignment of distantly related kappa
caseins. There are few conserved column positions, and
many some columns (double arrowheads) have five
different residues among the 7 proteins.VWe want to design
a scoring system that is tolerant of distantly related
proteins: if the scoring system is too strict then the
divergent sequences may be penalized so heavily that
authentic homologs are not identified or aligned.




replacement amino acid replacement amino acid

Dayhoff step 5 (of 7): PAM250 and other PAM matrices

original amino acid

PAMO A R N D C Q E G
A 100 0 0 0 0 0 0 0
R 0 100 0 0 0 0 0 0
| 0 0 100 0 0 0 0 0
D 0 0 0 100 0 0 0 0
G 0 0 0 0 100 0 0 0
Q 0 0 0 0 0 100 0 0
E 0 0 0 0 0 0 100 0
G 0 g 0 g 0 0 0 100

original amino acid

PAM oo A R N D C Q E G
A 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7
R 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
M 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
D 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
Q 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
E 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
G 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

At the extreme of perfectly conserved proteins (PAMO)
there are no amino acid replacements. At the extreme of
completely diverged proteins (PAM®) the matrix converges
on the background frequencies of the amino acids.




for proteins that share ~20% identity

PAM250 matrix
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Compare this to a PAMI matrix, and note the diagonal still

has high scores but much information content is lost.




Dayhoff step 6 (of 7): from a mutation probability
matrix to a relatedness odds matrix

M;;
le —_
f

I

A relatedness odds matrix reports the probability that
amino acid j will change to i in a homologous sequence.

The numerator models the observed change. The
denominator fi is the probability of amino acid residue i
occurring in the second sequence by chance.

A positive value indicates a replacement happens more
often than expected by chance.A negative value indicates
the replacement is not favored.




Why do we go from a mutation probability
matrix to a log odds matrix!?

* We want a scoring matrix so that when we do a pairwise
alignment (or a BLAST search) we know what score to
assign to two alighed amino acid residues.

* Logarithms are easier to use for a scoring system. They
allow us to sum the scores of aligned residues (rather
than having to multiply them).



Log-odds matrix for PAM250

6
3| 5

41 0] 6]

2|-5| 0| 9]

31 2|5 6

30 0[-2]-3 1

2 0|-1]-3 0| 1| 3
23| -4 0 6| -2]-5]|17
1|42 7 -5|-3[-3] 0]10
2|20 21 -1|-1| 0]|-6| -2 4]
L K/M/F P|S | T | W|Y V|

This is a useful matrix for comparing distantly related
proteins. Note that an alignment of two tryptophan (W)
residues earns +17 and aW to T mismatch is -5.




Log-odds matrix for PAMIO0

A 7

R | -10 9

N 7 | -9 g

D 6 | -17 | -1 8

c |-10 | -11 |-17 | -21 | 10

Q 7| -a| -7 -8 [-20 3

E 5 | -15 | -5 0 | -20 | -1 8

G 4 | -12 | -6 | -6 | -13 |-10 | -7 7

H |-11 | -a | -2 | -7 [-10 | -2 | -9 |-13 | 10

I 8| -8 | -8 |-12 | -9 |-11 | -8 |-17 | -13 9

L 9 | -12 [-10 | -19 [-21 | -8 | -13 |-12 | -9 | -a 7

K |[-120| 2| -2a| -8 |-20| -6 | -7 |-10 |-10 | -9 [-11 7

M 8| -7 |-15 |-17 [-20 | -7 [-10 [-22 [-17 | -3 | -2 | -2 | 12

F |-12 | -12 |-12 | -21 |[-19 |-19 |-20 |-12 | -9 | -5 | -5 | -20 | -7 9

P 2| -7 -9 |-12 |[-11 | -6 | -9 [-10 | -7 |-12 [-10 | -10 | -11 | -13 8

g 3| 6| -2| -7 -6 | -8| -7 | -2 | -9 |-10 |[-12| -7 | -8 | -9 | -a 7

T 3|-10| -5| -8|-12| -9 | -9 [-10|-12 | -5 [-20| -6 | -7 |-22 | -7 | -2 8

W -2 | -5 |-11 [-21 [-22 [-19 |-23 [-21 [-10 [-20 | -9 |-18 |-18 | -7 [-20 | -8B [-19 | 13

Y |-11 |-14 | -7 | -17 | -7 |-18 | -11 |-20 | -6 | -9 | -10 | -12 | -17 | -1 | -20 | -10 | -8 | -8 | 10

v 5 | -11 [-12 |-11 | -9 |[-10 |-10 | -9 | -8 | -1 | -5 |-13 | -2 | -12 | -9 |-10 | -6 | -22 | -10
A | R N | D C Q | E G | H I L | K M F P g T | W Y

This is an example of a scoring matrix with “severe”

penalties. A match of W to W earns +1 3, but a mismatch

(e.g.W aligned to T) has a score of -19, far lower than in
PAM250.




BLOSUM®62 scoring matrix
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BL62 is the default scoring matrix at the NCBI BLAST site.




BLOSUM Matrices

BLOSUM matrices are based on local alighments.

All BLOSUM matrices are based on observed alignments;
they are not extrapolated from comparisons of

closely related proteins.

BLOSUM stands for blocks substitution matrix.

BLOSUMS62 is a matrix calculated from comparisons of
sequences with no less than 62% divergence.

BLOSUMS62 is the default matrix in BLAST 2.0.



BLOSUMé62
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Summary of PAM and BLOSUM matrices

BLOSUMSO BLOSUMG2 BLOSUMA45
PAM30 PAM120 PAMZ50

Human versus Human versus
chimpanzee beta globin bacterial globins

A higher PAM number, and a lower BLOSUM number,
tends to correspond to a matrix tuned to more divergent
proteins.
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Two kinds of sequence alignment: global and local

We will first consider the global alignment algorithm
of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm
of Smith and Waterman (1981).

BLAST, a heuristic version of Smith-VWaterman.



Global alignment with the algorithm
of Needleman and Wunsch (1970)

* Two sequences can be compared in a matrix
along x- and y-axes.

* If they are identical, a path along a diagonal
can be drawn

* Find the optimal subpaths, and add them up to achieve
the best score. This involves
--adding gaps when needed
--allowing for conservative substitutions
--choosing a scoring system (simple or complicated)

* N-W is guaranteed to find optimal alighment(s)



Three steps to global alignment
with the Needleman-VWunsch algorithm

[I] set up a matrix
[2] score the matrix

[3] identify the optimal alignment(s)



Four possible outcomes in aligning two sequences

sequence 1 (length m)

region of
= -+— alignment
= without gaps
o
= - gapin
o sequence 2
QL
=
@
; T
o
QL
m -
gap in
sequence 1

identity (stay along a diagonal)

0
2] mismatch (stay along a diagonal)
3] gap in one sequence (move vertically!)
BRFG 3e 4] gap in the other sequence (move horizontally!)
Fig. 3-20

Page 97



Four possible outcomes in aligning two sequences

sequence 1 sequence 1 sequence 1 sequence 1
GLMT GLMT G LT GLMT
o od od o
o O w O o G o O
e L e L e L e L
S M S v S v ST
g T @ T @ T o
43 [ 1] [ 1] 43
1 GLMT 1 GLMT 1 GL-T 1 GLMT
2 GLMT 2 GLVT 2 GLVT 23L-T

B&FG 3e
Fig. 3-20
Page 97



Global pairwise alignment using Needleman-Wunsch

(a) Sequence 2
F M DT P L NE

0 -2 -4 -6 -8 -10-12/-14-16

10
12
14
16
18

Sequence 1

m  © O m < I XX =

|dentify positions of identity (shaded gray).



Global pairwise alignment using Needleman-Wunsch

F(i-1,] ) - gap penalty

Score = Max { F(>i-1, j-1) + s(x;, v;)
F(i, j-1) - gap penalty

Score (this example) = +1 (match)
-2 (mismatch)

-2 (gap penalty)

Define an overall score that maximizes cumulative scores at
B&FG 3e  each position of the pairwise alignment, allowing for

E‘g'3'928' substitutions and gaps in either sequence.
age



B&FG 3e
Fig. 3-21
Page 98

Global pairwise alignment using Needleman-Wunsch

(c)
Sequence 2
Fi-1,-1) | FELD)
9 -gap
§ +5(Hf,}fj}\ vaenalty
3
F(i,j-1) —* F(.))
-gap
penalty

To decide how to align sequences | and 2 in the box at lower
right, decide what the scores are beginning at upper left (not
requiring a gap), or beginning from the left or top (each
requiring a gap penalty).



Global pairwise alignment using Needleman-Wunsch

(d)

Sequence 2
F M
0 . 2 -4
5 e
§F 2 P+
o
@
v
K -4

Here the best score involves +1 (proceed from upper left to
E'&F3Gz3|e gray, lower right square). If we instead select an alignment
1g. 3~ . .
Pagge 98 involving a gap the score would be worse (-4).



Global pairwise alignment using Needleman-Wunsch

(e)

Sequence 2

F M

0 -2 -4

- P

v Ny

s Fl 2 #1571
=
-)
QU
LA

K @ -4

B&FG 3e
Fig. 3-21

Proceed to calculate the optimal score for the next position.
Page 98



Global pairwise alignment using Needleman-Wunsch

(f) Sequence 2

F M DT P L NE
0 -2 -4 -6 -8 -10-12 -14-16
-2 \‘+1-.--1-p-3--5 +7+-9-+-11-+13
4
-6
-8

_ =
N O

Sequence 1

T O m <€ I XA T

—
s

L -16
E -18

B&FG 3e
Fig. 3-21

Page 98 Continue filling in the matrix.



Global pairwise alignment using Needleman-Wunsch

(@) Sequence 2
F M DT P L NE

0 -2 -4 -6 -8-10-12-14-16
A
-2 +1>1+-3+-5 +7+-9+11-+13
IV VT " VI VI
-4 =1 -1+-3-+-5=+7+-9+11-+13
PR AN M M N W
-6 -3 -3 -3+-57+-9+11-+13
“u " W N W
-8 -5 2+-4 | -5 7+-9+-11-+13
UIE ) I S R
-7 4 -4-+-6 -7+-9+11 -10
S " +
-12 9 -6 -3+%-5 +7+-9+11 -12
+ g é‘u "
-14-11 -8 -5 -5 -44+-6+-8-+10
R AR 2 A"
-16-11‘3 -1*0 -7 E’ -fi -?—--5 -7
" " %
-18-15 -12 ‘ﬁ) -9 -8 -5 -5 4

Sequence 1

m r— © O m< I = —m
—
-

Highlighted cells indicate the optimal path (best scores),
indicating how the two sequences should be aligned.



Global pairwise alignment using Needleman-Wunsch

(b) Sequence 2
F MDTPL NE
0\-2 -4 -6 -8 -10-12-14-16
241 -1 -3 -5-7/-9-11-13
-4 Y a3 5 70 a3
-6 _1‘3{3 -3 -5 -7 -9 -11}-13
-8/ -5-2 -4|-5 -7 -9 -11-13
-L -4 -6 -7 -9 -11-10
12/-9 | -6 BB -7 |9 [-11]12
-14-11/-8 -5 -5‘t4 -6 -8 -10
-16-13-10 -7 -7 -Eﬂ-3---5 -7

y-
-18-15-12-9 -9 -8 -5 -5 -4

Sequence 1

m r © O m < I X T
1
J—}
o
1
~J

Equivalent representation, showing the traceback procedure:
begin at the lower right cell and proceed back to the start.



Global pairwise alignment using Needleman-Wunsch

(b) Sequence 2
DT P L NE

6 -8-10112/-141-16
7 -9 11113
9 1113
9 |-11)13
9 |-11)13
9 -11-10
63458 7 91112
1185 -5 4 6|8 -10
1311007 | 7 | -6 \3e% 7
15-12/9 -9 -8 -5 -54

rJ
b=

o & AL o
b Uk [drtad G T

rol

FET R
T °r @ r 1 1
Gh b LnoWn

Sequence 1
m r~ © O m< T X T
o B N O
A A W ww
NUNN NN

L
oo

% *®, LY

t 1 b % x, %

+1 -1 -3 -2 -4 -3 «-5 -4 3 «-5 -4
Sequencel F K H M E D - P L - E
Sequence2 F - - M - D T P L N E

Equivalent representation, showing the traceback procedure:
begin at the lower right cell and proceed back to the start.



Needleman-Wunsch: dynamic programming

N-W is guaranteed to find optimal alignments, although
the algorithm does not search all possible alighments.

It is an example of a dynamic programming algorithm:
an optimal path (alignment) is identified by
incrementally extending optimal subpaths.
Thus, a series of decisions is made at each step of the
alignment to find the pair of residues with the best score.



Global alignment versus local alignment

Global alignment (Needleman-Wunsch) extends
from one end of each sequence to the other.

Local alignment finds optimally matching
regions within two sequences (“‘subsequences”).

Local alignment is almost always used for database
searches such as BLAST. It is useful to find domains
(or limited regions of homology) within sequences.

Smith and Waterman (1981) solved the problem of

performing optimal local sequence alignment. Other
methods (BLAST, FASTA) are faster but less thorough.



B&FG 3e

Fig. 3-23
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(b)

NP_824492.
NP _337032.
NP _824492.
NP_337032.
NP_824492.
NP_337032.
NDP_824492.
NP_337032.
NP_824492.
NP _337032.
NP_824492.

NP_337032.

NP_824492.
NP_337032.
NP_824492.
NP_337032.
NP_824492.

NP _337032.

Global alignment (top) includes matches
ignored by local alignment (bottom)
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How the Smith-Waterman algorithm works

Set up a matrix between two proteins (size m+1|,n+1)

No values in the scoring matrix can be negative! S > 0

The score in each cell is the maximum of four values:

2]
3
4

S(i- [, j-|) + the new score at [i,j] (a match or mismatch)
s(i,j-1) — gap penalty

s(i-1,j) — gap penalty
Zero < this is not in Needleman-VWunsch



Where to use the Smith-Waterman algorithm

[I] Galaxy offers “needle” and “water” EMBOSS
programes.

[2] EBI offers needle and water.
http://www.ebi.ac.uk/Tools/psa/

[3] Try using SSEARCH to perform a rigorous Smith-
Waterman local alignment:
http://fasta.bioch.virginia.edu/

[4] Next-generation sequence aligners incorporate
Smith-Waterman in some specialized steps.



Rapid, heuristic versions of Smith-VVaterman:
FASTA and BLAST

Smith-Waterman is very rigorous and it is guaranteed
to find an optimal alignment.

But Smith-Waterman is slow. It requires computer
space and time proportional to the product of the two
sequences being aligned (or the product of a query
against an entire database).

Gotoh (1982) and Myers and Miller (1988) improved the
algorithms so both global and local alignment require
less time and space.

FASTA and BLAST provide rapid alternatives to S-WV.
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Pairwise alignment with dotplots

(a) Human cytoglobin compared to itself

NP_599030.1

1 NP_599030.1 T

B&FG 3e A human globin searched against itself produces a unit

E;gg':'lzoss diagonal on a dot plot (NCBI BLASTP aligning 2 sequences).



Pairwise alignment with dotplots

(b) Cytoglobin compared to a snail globin (BLOSUM®62) (c) Cytoglobin compared to a snail globin (PAM250)

2148 8f L 2148 3f — = ——

CAJ44466.1
i
l
CAJ44466.1
i

1 NP_599030.1 190 1 NP_599030.1 190

Search human cytoglobin against a large snail globin (having
many globin repeats). More repeats are observed using PAM250

than BLOSUMS2.

To “read” this plot note that cytoglobin (x-axis) matches the
snail globin (y-axis) at about a dozen locations across the snail
protein. Red arrows indicate that the first few and last few
amino acids of cytoglobin do not participate in this repeat
structure.



Pairwise alignment with dotplots

haemoglobin type 1 [Biomphalaria glabrata]
Sequence 1D0: eMbICAJ44466 1] Length: 2148 Number of Matches: 15

Range 1: 1529 to 1669 GenPept GCraphics
Score Expect Method Identities Positives Gaps

55.0 bits(189) 4e-13 Composition-based stats. 36/141(26%) 83/141(58%) 4/141(2%)
Query 18 ELSEAERKAVOAMWARLYANCEDV-~-~GVAILVRFFVNFPSAKQYFSQFKAMEDPLEMER 74

LSE++R+A+++ WRL A 44V GV 44+4FF N+P+ 4+ FeelF + +

Sbjct 1529 CGLSETDRRALDSSWKRLTAGENGVQEAGVNLVLWFFNNIPNMRERFTKFDANQADDALRA 1588

Query 75 SPQLRKHACRVMGALNTVVENLEDPDKVSSVLALVGKAH-ALKHKVEPVYFKILSGVILE 133
Pes+Ks +4GeL4+ +4444DP + ¢+ + V+ AH 4+ V YF LS I

Sbjct 1589 DPEFQKQVNVIVGGLKSFLDSVNDPIALQANMDRVAEAHLSMDPVVGVPYFSALSONIHR 1648

Query 134 VVAEEFASDFPPETQRAWAKL 154

+ ++ ++ <+AWN+ L
Sbict 1649 FIEISLGVIADSDESQAWIDL 16869

BLASTP output includes the various sequence alignments. One
is shown here: human cytoglobin (residues |8-154) aligns to the
snail globin (at residues 1529-1669).The expect value is
convincing (4e-13), and this is one of a dozen sequence
alignments.

Conclusion: the dotplot is an excellent way to visualize complex
repeats.
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Statistical significance of pairwise alignments

alignment result:
sequences reported
as related

alignment result:
sequences reported
as not related

(or, sequences

not reported)

sequences are
homologous

Information based on a “gold standard” (e.g. 3D structure)

sequences are
not homologous

True positives
(TP)

False negative
(FN)

- - - e ] - - - en o em mmlen e o -

False positives

(FP) All positives

True negative

(TN) All negatives

Sensitivity =TP / (TP + FN)
Specificity =TN / (TN + FP)



Statistical significance of pairwise alignments

The statistical significance of global alignments is not well
described.We can apply a z-score.

z=2"H
A

For local alignment the statistical significance is thoroughly
understood.




Perspective

Pairwise alignment is a fundamental problem in
bioinformatics. We discussed concepts of homology, and
global versus local alignment (e.g. Needleman-VWunsch

versus Smith-VWaterman algorithms).



Substituent residue
(Percentage of total residue sites at which the substituent occurs)

ARNDCOQEGH I LKMFPSTWYYV

A 28 31[33 31

R 50 58 25

N |33 47 33 33 33[33

D [44] |22 47|34 22 28 25

C (66

Q 56 30 [ 40 70
5 E |50 44 38 41 24
S @ |5t 33 30 27 36
£ H 26 2630 22|22
-g EE 58 46
S L |2 N BERE 30
= Kk [23]21] |8 31|23 21 21
S M |22 22|89 22 45
(;'; F 22 [l 61

P |50 43 57|43 21

s |49 24 2436 24 40

T |a2 2824 24 52

W {40 40 60

Y (33 50

v |36 21 43|21

We end with a remarkable scoring matrix reported by
Zuckerkandl and Pauling in 1965, soon after the very first
protein sequences were identified. While the data set was
very sparse, these authors already found patterns of amino
acid substitutions that occur in nature.



