Incoherent Light Sources

M. Sc. Chemical Engineering / Photonics / Material Science and Engineering

September 17th, 2024

Prof. Dr. Thomas Jüstel

Name: _____

Enrolment number: _____

Date of Birth:

Please keep in mind to clearly figure out the solution approach and the results! Please solely use IUPAC units!

Duration: 180 Minutes

Allowed aids: Periodic table of the elements, Pocket calculator, Dieke-Diagram, formulaic collection math

Points		<u>Mark</u>	
Task 1:	10 Points	1.0 95-1	100 Points
Task 2:	10 Points	1.3 90-9	94 Points
Task 3:	10 Points	1.7 85 - 8	89 Points
Task 4:	10 Points	2.0 80-8	84 Points
Task 5:	10 Points	2.3 75-7	79 Points
Task 6:	10 Points	2.7 70-7	74 Points
Task 7:	10 Points	3.0 65-6	59 Points
Task 8:	10 Points	3.3 60-6	64 Points
Task 9:	10 Points	3.7 55-5	59 Points
Task 10:	10 Points	4.0 50-5	54 Points
		5.0 0-49	Points

Success!

<u>Task 1</u>

Physical basis of light generation

a) Please name the three physical processes, which are applied for the light generation in light sources used for general lighting. Please also figure the steps of the light generation pathway! (6 Points)

b) Please distinguish between thermal and non-thermal radiation sources! (2 Points)

c) Please explain the expression ,,chemoluminescence" and illustrate it by the reaction of white Phosphor P_4 with molecular Oxygen! (2 Points)

Terms related to lighting technology

Please define the following photometric and radiometric quantities and mention the respective physical units! (1 Point each)

Term	Definition	Unit
Radiant flux		
Irradiance		
Intudianee		
T C		
Luminous flux		
Illuminance		
Wall plug efficiency		

Incandescent and halogen lamps

a) Please mention suitable technical components for the construction of an incandescent or halogen lamp! (0.5 Points each)

Wire material	Gas filling	Glass type

b) Please sketch schematically the spectrum of a black body radiator at a temperature of 2700 and of 5800 K! Please also subdivide the x-axis into the spectral ranges UV, VIS, and NIR! (2 Points)

c) Please calculate by the aid of Wien's displacement law ($\lambda_{max}= 2880 / T [\mu m^*K]$) the temperature of a black body radiator, at which the maximum of the emission intensity coincides with the maximum of the photopic eye sensitivity of humans (555 nm)! (2 Points)

d) Please explain why such an incandescent lamp cannot be constructed from a material scientist point of view? (1 Point)

e) Please sketch the chemical transport reaction in halogen lamps! (2 Points)

Quality figures of light sources

a) Please define the term "Luminous efficacy"! (1 Point)

b) The term energy efficiency ε means the conversion of electrical input power P_{el} to optical output power P_{opt} . The term luminous efficacy ε_v describes the relation between the luminous flux Φ_v and the radiant flux Φ_e . (Please complete the following table, in which common light sources are sorted by their energy efficiency! 0.5 Points each)

Light source	Electrical input	Energy efficiency	Radiant flux	Luminous efficacy av	Luminous flux	Light vield
	power Pel	8	$\Phi_{\rm e}$	[lm/W _{optical}]	$\Phi_{\rm v}$	[lm/Wel.]
Incandescent lamp	100 W	5%		200		
Halogen lamp	50 W	10%		250		
Low-pressure Hg discharge lamp (fluorescent lamp, tubular)	36 W	30%		300		
Low-pressure Na discharge lamp	200 W	40%		500		
Warm-white LED	5 W	50%		280		
Cold-white LED	5 W	80%		350		

Low-pressure gas discharge lamps

a) Please name two reasons why Na or Hg are mostly used as primary emitter in low-pressure discharge lamps! (2 Points) (2 Points)

b) Please sketch the light generation chain in a linear fluorescent lamp! (4 Points)

c) The following graphs show the luminous efficacy and CRI of a trichromatic fluorescent lamp. Please name the optimal emission wavelengths for the choice of the blue and red emitting component with respect to the light yield and CRI of such lamps? (2 Points)

d) Name two typical activator ions, which are used in luminescent materials for low-pressure Hg discharge lamps! (2 Points)

<u>Task 6</u>

(10 Points)

Inorganic luminescent materials

a) Explain the working principle of an arbitrary luminescent material by a simple sketch! (3 Points)

b) Please sketch the concentration quenching curve of an arbitrary luminescent material and explain the shape of the curve? (3 Points)

c) Please explain the term sensitization and give an example for a material that uses an sensitizer! (2 Points)

d) Please explain the importance of lanthanide ions as activators in many phosphors for light sources and for full color displays! (2 Points)

<u>Task 7</u>

(10 Points)

Luminescence mechanisms

a) Please explain the term up-conversion by a self-chosen example! (2 Points)

b) Please name the dominant luminescence mechanism causing the photoluminescence of the following activators ions! (each 1 Point)

Ti³⁺

 Mn^{4+}

 Ce^{3+}

 Eu^{3+}

 Eu^{2+}

 WO_4^{2-}

 Sn^{2+}

Bi³⁺

<u>Task 8</u>

(10 Points)

Light Emitting Diodes (LEDs)

a) $(Ga_{1-x}In_x)N$ and $(Ga_{1-x}In_x)P$ are important solid solutions for semiconductor LEDs. Please sketch the course of the electronic band gap as function of x for these nitrides and phosphides. Please also compare the two solid solutions with each other! (3 Points)

b) Explain the success of III-V semiconductor LEDs with respect to lifetime, color rendering, and wall plug efficacy! (3 Points)

c) Please mention two measures to enhance the wall plug efficiency of LEDs! (2 Points)

d) Please explain the term multi quantum well and comment on its importance for inorganic LEDs! (2 Points)

<u>Task 9</u>

(10 Points)

Organic Light Emitting Diodes (OLEDs)

a) Please sketch the cross-section of an OLED device comprising a glass substrate, an emitter layer, a hole and electron conducting layer, anode, cathode, and hole blocking layer! (2 Points)

b) Explain the reason for the use of a hole blocking layer in modern OLEDs! (2 Points)

c) Give two reasons for for the dominance of Ir³⁺ complexes in OLEDs? (2 Points)

d) Mention two technical measures to improve the light extraction from a planar OLED device! (2 Points)

e) Briefly describe the technical process to manufacture OLEDs! Compare this process to the manufacturing process of polymer LEDs (PLEDs)! (2 Points)

<u>Task 10</u>

(10 Points)

UV Radiation Sources

a) Which chemical reactions are triggered by UV radiation in the tropo-, strato- and ionosphere? (3 Points)

b) Please name four types of artificial UV radiation sources? (4 Points)

c) Calculate the wall-plug efficiency ϵ of an electrical UV radiation source comprising a discharge vessel with a Hg low-pressure discharge (discharge efficiency $\epsilon_{discharge} = 70\%$, 15% 185 nm and 85% 254 nm), a high frequency driver ($\epsilon_{driver} = 90\%$), and an UV-B phosphor (La,Bi)B₃O₆:Gd, 311 nm, QE = 90%)! (3 Points)

Appendix: Dieke Diagram for Ln³⁺-Ions

Helium 2 He 4.0026	neon 10	Ne	20.180	argon 18	Ar	39.948	krypton 36	Kr	83.80	xenon 54	Xe	131.29	radon 86	Rn	[222]				
	fluorine 9	LL	18.998	chlorine 17	_บ	35.453	bromine 35	Br	79.904	iodine 53	—	126.90	astatine 85	At	[210]				
	oxygen 8	0	15.999	sultur 16	S	32.065	selenium 34	Se	78.96	tellurium 52	Te	127.60	polonium 84	Ро	[209]				
	nitrogen 7	Z	14.007	phosphorus 15	٩	30.974	arsenic 33	As	74.922	antimony 51	Sb	121.76	bismuth 83	Bi	208.98				
	carbon 6	ပ	12.011	allicon 14	Si	28.086	germanium 32	Ge	72.61	tin 50	Sn	118.71	lead 82	РЬ	207.2	ununquadium 114	Uuq	[289]	
	boron 5	Ш	10.811	aluminum 13	AI	26.982	gallium 31	Ga	69.723	indium 49	ln	114.82	thallium 81	F	204.38				
							zinc 30	Zn	65.39	cadmium 48	Cd	112.41	mercury 80	Hg	200.59	ununbium 112	Uub	[277]	
							copper 29	Cu	63,546	silver 47	Aq	107.87	plog 79	Au	196.97	unununum 111	Uuu	[272]	
							nickel 28	Ï	58.693	palladium 46	Pd	106.42	platinum 78	Pt	195.08	110	Uun	[271]	
							cobalt 27	° S	58,933	rhodium 45	Rh	102.91	iridium 77	l	192.22	109	Mt	[268]	
							iron 26	Fe	55.845	ruthenium 44	Ru	101.07	osmium 76	Os	190.23	108	Hs	[269]	
							manganese 25	Mn	54.938	technetium 43	Tc	[98]	rhenium 75	Re	186.21	bohrium 107	Bh	[264]	
							chromium 24	С Г	51.996	molybdenum 42	Mo	95.94	tungsten 74	>	183.84	seaborgium 106	Sg	[266]	
							vanadium 23	>	50.942	niobium 41	qN	92.906	tantalum 73	Ta	180.95	dubnium 105	Db	[262]	
							titanium 22	Ĩ	47.867	zirconium 40	Zr	91.224	hafnium 72	Ηf	178.49	rutherfordium 104	Rf	[261]	
							scandium 21	Sc	44.956	yttrium 39	7	88.906	lutetium 71	Lu	174.97	103	L	[262]	
													57-70	*		89-102	*		
	beryllium 4	Be	9.0122	magnesium 12	Mg	24.305	calcium 20	Ca	40.078	strontium 38	Sr	87.62	barium 56	Ba	137.33	88	Ra	[226]	
hydrogen	lithium 3	-	6.941	11	Na	22.990	potassium 19	Y	39.098	rubidium 37	Rb	85.468	caesium 55	Cs	132.91	francium 87	F	[223]	

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
nthanida sarias	57	58	59	60	61	62	63	64	65	99	67	68	69	20
	La	Ce	Рг	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Р	ш	Tm	Υb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium.	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
ctinide series	89	90	91	92	93	94	95	96	97	98	66	100	101	102
	Ac	Th	Ра	D	dN	Pu	Am	Cm	¥	Çf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	237	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Appendix: Periodic Table of the Elements