Incoherent Light Sources

M.Sc. Chemical Engineering / M.Sc. Photonics / M.Sc. Material Science and Engineering

July 09th, 2024

Prof. Dr. Thomas Jüstel

Name:		
-------	--	--

Enrolment number: _____

Date of Birth:

Please keep in mind to clearly figure out the solution approach and the results! Please solely use IUPAC units!

Duration: 180 Minutes

Allowed aids: Periodic table of the elements, Pocket calculator, Dieke-Diagram, formulaic collection math

<u>Points</u>		<u>Mark</u>	
Task 1:	10 Points	1.0 9	5 – 100 Points
Task 2:	10 Points	1.3 9	0-94 Points
Task 3:	10 Points	1.7 8	5-89 Points
Task 4:	10 Points	2.0 8	0-84 Points
Task 5:	10 Points	2.3 7	5-79 Points
Task 6:	10 Points	2.7 7	0-74 Points
Task 7:	10 Points	3.0 6	5-69 Points
Task 8:	10 Points	3.3 6	0-64 Points
Task 9:	10 Points	3.7 5	5-59 Points
Task 10:	10 Points	4.0 5	0-54 Points
		5.0 0	– 49 Points

Success!

<u>Task 1</u>

Physical basis of light generation

a) Please name the three physical processes, which are applied for the light generation in electrical light sources! (3 Points)

b) Explain the importance of blue light for the realization of white light sources! Which technical solutions are known to you to generate blue light? (3 Points)

c) Please define the terms "light outcoupling" and explain its importance for the wall plug efficiency of electrical light sources! (2 Points)

d) Please explain the process of chemiluminescence as result of the oxidation of white phosphor P₄ (comment: this process is the origin of the term phosphorescence)! (2 Points)

Vision and Colour

a) Please define the terms photopic and scotopic vision! (2 Points)

b) Please sketch the human eye sensitivity curves for photopic and scotopic vision and name two reasons for the shape of these curves! (4 Points)

c) Please explain the term "colour temperature" and its determination! (2 Points)

d) Please explain why the resolution of the human eye depends on the colour and why black and white images are perceived by humas with the highest resolution! (2 Points)

(10 Points)

Incandescent and halogen lamps

a) Please sketch schematically the spectrum of a black body radiator at a temperature of 2700 and of 4000 K! Please also subdivide the x-axis into the spectral ranges UV, VIS, and NIR! (2 Points)

b) Please calculate by the aid of Wien's displacement law ($\lambda_{max}= 2880 / T [\mu m^*K]$) the temperature of a black body radiator, at which the maximum of the emission intensity coincides with the maximum of the photopic sensitivity of the human eye (555 nm)! (2 Points)

c) Mention two properties of the ideal material for the filament of incandescent and halogen lamps? Which is thus the best material? (3 Point)

d) Please explain the hot spot mechanism with respect to the lifetime of an incandescent or halogen lamp. Which impact has the required power loss on the hot spot mechanism (Power P = U*I = $R*I^2$, Resistance $R = \rho l/A$ with $\rho =$ specific resistance)! Please also name a technical measure in order to enhance the lifetime of incandescent lamps! (3 Points)

(10 Points)

Quantitative Terms for Lighting Technology

a) Please explain the following terms used in lighting technology! (1 Points each)

- Wall plug efficiency
- Luminous flux
- Luminous efficacy
- Illuminance

b) The term energy efficiency ϵ means the conversion of electrical input power P_{el} to optical output power P_{opt} . The term luminous efficacy ϵ_v describes the relation between the luminous flux Φ_v and the radiant flux Φ_e . (Please complete the following table! 0.5 Points each)

Light source	Electrical input power P _{el}	Energy efficiency ε	Radiant flux Φ.	Luminous efficacy ε _v [lm/W _{ontical}]	Luminous flux $\Phi_{\rm v}$	Light yield [lm/W _{el.}]
Halogen lamp	100 W	10%		250		
Low-pressure Na discharge lamp	200 W	40%		500		
Low-pressure Hg discharge lamp (fluorescent lamp, tubular)	36 W	30%		300		
Warm-white LED	5 W	50%		280		

Low-pressure gas discharge lamps

a) Please name two reasons why Na or Hg are mostly used as emitter in low-pressure discharge lamps! (2 Points)

b) Please sketch the electrode of a fluorescent lamp and explain the purpose of the coating! (2 Points)

c) The following graphs show the luminous efficacy and CRI of a trichromatic fluorescent lamp. Please name the optimal emission wavelengths for the choice of the blue and red emitting component with respect to the light yield and CRI of such lamps? (2 Points)

d) Name two activator ions, which are used in phosphors for low-pressure Hg discharge lamps! (2 Points)

e) Please explain why the glass tubes of fluorescent lamps are precoated by α -Al₂O₃ or Y₂O₃! (2 Points)

<u>Task 6</u>

(10 Points)

Inorganic luminescent materials

a) Explain the working principle of an arbitrary luminescent material by a simple sketch! (3 Points)

b) Please sketch the concentration quenching curve of an arbitrary luminescent material and explain the shape of the curve? (3 Points)

c) Please explain the term sensitization and give an example for a material that uses an sensitizer! (2 Points)

d) Please explain by means of the Dieke diagram the importance of the activator Eu^{3+} for light sources and for full colour displays! (2 Points)

<u>Task 7</u>

(10 Points)

Luminescence mechanisms

a) Please explain the term s²-ion and give an example for a technical relevant ion! (2 Points)

b) Please name two reasons for the wide use of trivalent lanthanide ions in laser crystals, scintillators, and luminescent materials for light sources and displays! (2 Points)

c) Please explain the following physical processes. You may use self-elected examples for illustration! (1 Point each)

cross-relaxation (CR)

excited state absorption (ESA)

energy-transfer up-conversion (ETU)

photoionization (PI)

d) Please explain by term afterglow and propose a mechanistic model by a simple sketch! (2 Points)

<u>Task 8</u>

(10 Points)

Inorganic Light Emitting Diodes (LEDs)

a) $(Ga_{1-x}In_x)N$ and $(Al_{1-x}Ga_x)N$ are widely applied solid solutions for semiconductor LEDs. Please sketch the course of the electronic band gap as function of x for both solid solutions. Please also explain the observation why the course of the electronic band gap as function of x is not a straight line! (3 Points)

Material	Electronic band gap
AlN	6.2 eV
GaN	3.5 eV
InN	2.0 eV

b) Please name to reasons for the commercial success of III-V semiconductor LEDs! (2 Points)

c) Please mention two physical processes which determine the wall plug efficiency of inorganic LEDs! (2 Points)

d) Please name two physical processes for the cooling of LEDs and discuss the advantage of the flip-chip design for high-power LEDs! (3 Points)

<u>Task 9</u>

(10 Points)

Organic Light Emitting Diodes (OLEDs)

a) Describe the process of manufacturing of OLEDs and PLEDs. Please also explain the causes for the different manufacturing processes! (3 Points)

b) Explain the causes for the dominance of Ir^{3+} complexes in OLEDs? (3 Points)

c) Sketch the light generation chain in a typical OLED! (4 Points)

<u>Task 10</u>

(10 Points)

UV Radiation Sources

a) Please name four types of artificial UV radiation sources! (4 Points)

b) Please name three technically relevant photochemical reactions and propose a suitable UV radiation source for each of them! (3 Points)

c) Calculate the wall-plug efficiency ε of an electrical UV radiation source comprising a discharge vessel with a Hg low-pressure discharge (discharge efficiency $\varepsilon_{discharge} = 70\%$, 15% 185 nm and 85% 254 nm), a high frequency driver ($\varepsilon_{driver} = 90\%$), and an UV-B phosphor (La,Bi)B₃O₆:Gd, 311 nm, QE = 90\%)! (3 Points)

Appendix: Dieke Diagram for Ln³⁺-Ions

ະ ຝະສະ ຝະສ	с Б ара, Б о	⊑. (1) ຊີ∈	C
	argo Kiypit 83.8 83.8 83.8 83.8 83.8 83.8 83.8 83.	86 ado	
fluorine 18, 998	станопа 35,453 35,453 35,453 35,453 СС 17 17 39,904	53 53 126.90 astatine 85	
oxygen 8 0 8 15,999	sulfur 16 32.065 34 34 78.96 78.96	tellurium 52 127,60 polonium 84	P
nitrogen 7 14.007	AS A	antimony 51 51 51 51 51 bismuth 83	208.98 208.98
carbon 5.01	silicon 14 28.086 32 33 32 32 66	S S S S S S S S S S	PD 207.2 114 114 289
ومو 1081 1081	atiminium 13 31 31 31 31 31 31 31 31 31 31 31 31	49 H 114:82 89 B 114:82	204.38
	2 30 30 ziho	admium 48 48 48 112.41 mercury 80	Hg nunbium 112 Jub I ²⁷⁷
	copper 29 33 63.546	silver 47 AG ^{107.87} 79	Au 196.97 111 111 JuuL
	28 28 58.693	Alladitum 46 106.42 Matinum 78	Jun C
	27 27 58.933	45 45 45 45 45 45 77 77 77 77	Inertum altherium 109 268
	100 Incon 26 845	44 44 76 76	100 108 108 108 108 108 108 108
	1 100 100 100 100 100 100 100 100 100 1	hinetium 14 43 (98) 75 75 75	
	24 National International Inte	00 00 00 00 00 00 00 00 00 00	
	vanad 23	1 73	
	1141 1141 1141 1141 1141 1141 1141 114	Zirconiun 40 40 91.224 hafnium 72	178.49 rutherfordit. 104 104 261
	21 21 21 44.966	yttrium 33 38.906 1utetium 1utetium	174.97 t74.97 103 [262]
		57-70	* * * *
		100	
beryllium 4 9.0122	12 12 12 12 12 12 12 12 12 12 12 12 12 1	87.62 Bartum 56	226 226 226 226 237.33

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
* anthanida cariac	57	58	59	60	61	62	63	64	65	99	67	68	69	20
	La	Ce C	Рг	Nd	Pm	Sm	Eu	Gd	Tb	DV	Ч	ш	Tm	٩۲
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	60	91	92	93	94	95	96	97	98	66	100	101	102
	Ac	Th	Ра	D	Np	Pu	Am	Cm	¥	Ç	Es	Fm	Md	°N N
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Appendix: Periodic Table of the Elements